期刊文献+

结合自适应字典学习的稀疏贝叶斯重构 被引量:4

Sparse Bayesian reconstruction combined with self-adaptive dictionary learning
下载PDF
导出
摘要 贝叶斯压缩感知是一种基于统计分析的压缩感知算法,具有很好的鲁棒性,能够充分利用信息间的相关性,它的重构依赖于图像的稀疏性表达.针对贝叶斯压缩感知的深层次稀疏化问题,笔者结合自适应字典学习思想,提出一种冗余自适应字典表示的稀疏贝叶斯学习算法.该算法对图像进行局部分块,从待重建图像的迭代中间图像分块中学习字典,并以该字典作为图像的稀疏变换基,通过稀疏贝叶斯学习算法获得稀疏解.实验结果表明,基于自适应字典的贝叶斯学习算法能提高稀疏化,明显改善图像的重构质量. Bayesian compressive sensing (BCS), a kind of compressive sensing algorithm based on statistical analysis, uses information correspondence to get robust performance in image reconstruction. But it depends on image sparsity strongly. In order to solve further level sparsity of BCS, this paper presents a novel self-adaptive Bayesian compressive sensing algorithm combined with redundancy self-adaptive dictionary learning. The algorithm firstly decomposes an image into local patches and builds the dictionary from the iterating transition image. Then the image is represented by this dictionary space. Finally, the image is reconstructed using the sparse Bayesian learning algorithm. Experimental results show that the proposed algorithm obtains deep sparse representation and improves image reconstruction quality.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第4期1-4,122,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目(61271296) 陕西省自然科学基础研究计划资助项目(2016JM6012) 中央高校基本科研业务费专项资金资助项目(JB150218) 西安电子科技大学教育教学改革研究资助项目(B1311) 西安电子科技大学新实验开发与新实验设备研制及实验教学改革资助项目(SY1354)
关键词 稀疏贝叶斯学习 自适应字典 贝叶斯压缩感知 sparse Bayesian learning self-adaptive dictionary Bayesian compressive sensing
  • 相关文献

参考文献11

  • 1DONOHO D L. Compressed Sensing [J]. IEEE Transactions on Information Theory, 2006,52(4) :1289-1306.
  • 2TROPP J A, GILBERT A C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
  • 3王勇,冯唐智,陈楚楚,乔倩倩,杨笑宇,王国栋,高全学.结合自适应稀疏表示和全变分约束的图像重建[J].西安电子科技大学学报,2016,43(1):12-17. 被引量:2
  • 4JI S, XUE Y, CARIN L. Bayesian Compressive Sensing[J]. IEEE Transactions on Signal Processing, 2007, 56(6): 2346-2356.
  • 5BABACAN S D, LUESSI M. Sparse Bayesian Methods for Low-rank Matrix Estimation [J]. IEEE Transactions on Signal Processing, 2012, 60(8): 3964-3977.
  • 6王良君,石光明,李甫,谢雪梅,林耀海.多稀疏空间下的压缩感知图像重构[J].西安电子科技大学学报,2013,40(3):73-80. 被引量:16
  • 7HUANG H J, YU J, SUN W D. Superresolution Mapping Using Multiple Dictionaries by Sparse Representation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2055-2059.
  • 8DONG W, ZHANG L, SHI G, et al. Nonlocally Centralized Sparse Representation for Image Restoration[J].IEEE Transactions on Image Processing, 2013, 22(4) : 1620-1630.
  • 9YANG M, ZHANG L, FENG X C, et al. Sparse Represention Based Fisher Discrimination Dictionary Learing for Image Classification[J]. International Journal of Computer Vision, 2014, 109(3) : 209-232.
  • 10HUANG D, KANG L W, WANG Y F, et al. Self-learning Based Image Decomposition with Applications to Single Image Denoising[J]. IEEE Transactions on Multimedia, 2014, 16(1): 83-93.

二级参考文献41

  • 1Cand6s E, Romberg J, Tao, T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
  • 2Donoho D L. Compressed Sensing [J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
  • 3Duarte M, Davenport M, Takhar D, et al. Single-Pixel Imaging via Compressive Sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
  • 4Wakin M, Laska J, Duarte M, et al. Compressive Imaging for Video Representation and Coding [C/OL]. [2011-12- 30] . http://inside, mines, edu/- mwakin/paper/pcs-camera.*pdf.
  • 5Shi G M, Gao D H, Song X X, et al. High-Resolution lmaging Via Moving Random Exposure and Its Simulation [J]. IEEE Trans on Image Processing, 2011, 20(1) : 276-282.
  • 6Taubeck G, Hlawatsch F. A Compressed Sensing Technique for OFDM Channel Estimation in Mobile Environments: Exploiting Channel Sparsity for Reducing Pilots [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. l.as Vegas: IEEE, 2008: 2885-2888.
  • 7Wang I. J, Wu X I., Shi G M. A Compressive Sensing Approach of Multiple Descriptions for Network Multimedia Communication [C]//IEEE 10th Workshop on Multimedia Signal Processing. Cairns: IEEE, 2008: 445-449.
  • 8Wright J, Yang A, Ganesh A. Robust Face Recognition Via Sparse Representation, and Its Online Supplementary Material [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2) : 210-227.
  • 9l.iu B, Fu P, Meng S W. Compressive Sensing Signal Detection Algorithm Based on Location Information of Sparse Coefficients [J]. International Journal of Digital Content Technology and Its Applications, 2010, 4(8): 79-85.
  • 10Tropp J, Wakin M, Duarte M. Random Filters for Compressive Sampling and Reconstruction [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Toulouse: IEEE, 2006: 872-875.

共引文献16

同被引文献22

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部