期刊文献+

基于改进粒子群算法的云计算任务调度算法 被引量:17

A Task Scheduling Algorithm Based on Improved Particle Swarm Optimization for Cloud Computing
下载PDF
导出
摘要 面对云计算中的大量任务,为了对其进行高效的调度,缩短任务完成时间并提高资源利用率,对基于粒子群算法的云计算任务调度算法进行了研究.首先用自然数对粒子编码表示粒子的位置,并在解空间内随机初始化种群,每个粒子的位置对应一个可行的调度方案.每次迭代更新后,对粒子进行修复操作,为降低粒子跑出解空间的概率,同时对粒子速度进行限定.针对传统粒子群算法易陷入早熟的缺陷,加入混沌扰动策略使种群跳出局部最优.通过Cloudsim仿真平台进行实验测试,实验结果表明该算法能取得更好的调度结果并且收敛速度更快. Facing with large amount of tasks in cloud computing, a task scheduling algorithm based on improved Particle Swarm Optimization(PSO) was taken into research to minimize the task completion time and maximize the resource utilization. Firstly, the velocity and position of each particle are set randomly within the search space in the initialization. A swarm of particles are used to represent the potential solutions and the position of each particle is encoded by natural number. After each iteration update, legalized method was used to repair the particle. In order to reduce the probability of particles running out of the solution space, some method was taken to limit the velocity of each particle. For overcoming precocious, chaos was combined with PSO. By using chaos disturbance, the particles can have a better position. Cloudsim was used to stimulate cloud computing environment for experimental test. Experimental results show that compared with tradition PSO the improved PSO converges faster and have a better scheduling result.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第8期112-116,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(61561001) 北方民族大学重点科研项目资助(2015KJ10) 北方民族大学研究生创新项目(YCX1562)
关键词 云计算 粒子群优化 离散 任务调度 混沌 coud eomputing PSO discrete task scheduling chaos
  • 相关文献

参考文献9

  • 1Arleen M A, Pawlikowski K, Willig A. A Framework for Resource Allocation Strategies in Cloud Computing Environment[C] // Computer Software and Applica- tions Conference Workshops ( COMPSACW), 2011 IEEE 35th Annual. [s. l. ] :IEEE,2011,261-266.
  • 2朱宇航,郑丽英,邬开俊.基于改进DE的云计算任务调度算法[J].兰州交通大学学报,2013,32(1):101-106. 被引量:10
  • 3董丽丽,黄贲,介军.云计算中基于差分进化算法的任务调度研究[J].计算机工程与应用,2014,50(5):90-95. 被引量:24
  • 4张彬桥.云环境下计算资源调度策略与仿真研究[J].计算机仿真,2013,30(11):392-395. 被引量:16
  • 5Bilgaiyan S, Sagnika S, Das M. An analysis of task scheduling in cloud computing using evolutionary and swarm-based algorithms [J]. International Journal of Computer Applications, 2014, 89(2) :11-18.
  • 6MG Huang, ZQ Ou,GY Song, et al. Review of task scheduling algorithm research in cloud computing[J]. Advanced Materials Research, 2014 ( 926/930 ): 3236-3239.
  • 7Jeffrey D,Sanjay G. MapReduce: simplified data pro- cessing on large clusters[J]. Communications of the ACM,2008,51(1) :107- 113.
  • 8Bratton D, Kennedy J. Defining a standard for particle swarm optimization[C]//Proc of IEEE Swarm Intelli- gence Symposium. Honolulu : IEEE, 2007.
  • 9Calheiros R N, Ranian R, Beloglazov A, et al. Cloud- Sire: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J]. Software: Practice and Ex perience, 2010, 41(1) :23-50.

二级参考文献31

  • 1李波,石冰心,沈斌.可用性约束资源预留与分配算法[J].计算机科学,2005,32(2):28-30. 被引量:2
  • 2Michael A, Armando F, Rean G, et al. Above the Clouds: A Berkeley View of Cloud Computing I-R/ OL-]. UC Berkeley Reliable Adaptive Distributed Sys- tems Laboratory. (2012-06-15)1-2009-02-10-]. http:// www. eees. berkeley, edu/Pubs/TeehRpts/2009/EE- CS-2009-28. htmk.
  • 3雷葆华,饶少阳,江峰,等.云计算解码:技术架构和产业运营[M].北京:电子工业出版社,2011:132-135.
  • 4D Dutta, R C Joshi. A Genetic-algorithm approach to cost-based multi-QoS job scheduling in cloud compu- ting Environment I-C] ff International Conference and Workshop on Emerging Trends in Technology. Mum- bai. ACM, 2011 . 422-427.
  • 5朱宗斌,杜中军.基于改进GA的云计算任务调度算法[J/OL].计算机工程与应用.(2012-06-15)[2011-12-09].http://www.cnki.net/kcms/detail/11.2127.TP.20111209.1002.052.html.
  • 6Store P, Price K. Differential evolution-a simple and ef- ficient adaptive scheme for global optimization over continuous spaces[R]. Berkley: International Computer Science Institute, 1995.
  • 7Vesterstorm J, Thomsen tL A comparative study of differential evolution, particle swarm optimization and evolutionary algorithm on numerical benchmark prob- lem[-J-]. Proceedings of IEEE Congress on Evolution- ary Computation, 2004 : 1980-1987.
  • 8Rodrigo C, Rajiv R, Anton B, et al. CloudSim: a toolkit for modeling and simulation of cloud computing envi- ronments and evaluation of resource provisioning al- gorithms [-J -]. Software: Practice and Experience, 2011,41 (1) :23-50.
  • 9H Jin, et al. Data management Services and Transfer Scheme in China Grid[J]. International Journal of Web and Grid Services, 201,3(4) :447-461.
  • 10C G Xie, H Alazemi, N Ghani. Remuting in advance reservation networks[ J ]. Computer Communications, 2012,35 ( 10 ) :411 - 1421.

共引文献45

同被引文献119

引证文献17

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部