期刊文献+

基于通信链路的NoC映射算法 被引量:1

An NoC mapping algorithm based on communication links
下载PDF
导出
摘要 片上网络映射算法对系统通信能耗、延时等性能具有重大影响。基于通信链路通信量大小,提出一种改进的多目标遗传映射算法,以降低系统能耗和延时。算法中提出根据通信链路通信量大小决定任务在网络拓扑中映射位置的方式来产生初始染色体,并通过改进的变异操作产生新的子代,有效降低了算法复杂度,加快了算法的收敛速度。实验通过NIRGAM仿真平台进行,结果表明,与传统的多目标遗传算法相比,在实际应用DVOPD中,能耗降低了49.76%,通信延时降低了53.23%;在VOPD实验中,能耗和延时分别降低了29.54%和32.45%;而MPEG-4的能耗和延时则分别降低了45.72%和49.40%。同样,提出的算法与模拟退火算法相比,能耗和延时性能也有明显提高。 Network- on- Chip( No C) mapping algorithm has significant impact on system power consumption, latency and other performances. An improved multi- objective genetic mapping algorithm based on the communication links is proposed to decrease power consumption and latency. The algorithm designs a new chromosome initialization method whose communication links directly decide the positions of tasks in network. And a new mutation operator is used to getting offspring. The new algorithm reduces the com-plexity effectively and can accelerate the rate of converging. The experiment is implemented on NIRGAM, results show that power consumption and latency on DVOPD decreased 49. 76 % and 53. 23 % respectively. Compared with traditional multi- objective genetic algorithm, the result on VOPD can get power consumption 29. 54 % reduced and latency 32. 45 % reduced respectively. When come to MPEG- 4, power consumption decreased 45. 72 % and latency decreased 49. 40 %. Similarly, compared with simulated annealing algorithm, performances of power consumption and latency of the proposed algorithm improved obviously.
出处 《电子技术应用》 北大核心 2016年第8期121-124,共4页 Application of Electronic Technique
基金 国防基础科研计划项目(B3120133002) 西南科技大学创新团队基金(tdtk02) 西南科技大学研究生创新基金(15ycx121)
关键词 片上网络 映射 多目标遗传算法 通信链路 能耗 延时 Network-on-Chip mapping multi-objective genetic algorithm communication links power consumption latency
  • 相关文献

参考文献12

  • 1MARCULESCU R,OGRAS U Y,PEH L S,et al.Outstanding research problems in No C design:system,micro-architecture,and circuit perspectives[J].IEEE Transactions on Computeraided Design of Integrated and Systems,2009,28(1):3-21.
  • 2SALEHI M E,MOHAMMADI S,FAKHRAIE S M,et al.Energy/throughput trade-off in a fully asynchronous No C for GALS-based MPSo C architectures[C].In Proc.5th International Conference on Design and Technology of Integrated Systems in Nanoscale Era(DTIS),Hammamet,Tunisia,2010:1-6.
  • 3BOGDAN P,MARCULESCU R.Non-stationary traffic analysis and its implications on multicore platform design[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2011,30(4):508-519.
  • 4TOSUN S.New heuristic algorithms for energy aware application mapping and routing on mesh-based No Cs[J].Journal of Systems Architecture,2011,57(1):69-78.
  • 5陈亦鸥.面向实时复杂系统的片上网络架构及映射技术研究[D].成都:电子科技大学,2013.
  • 6Zhou Liyang,Jing Ming’e,Zhong Liulin,et al.Taskbinding based branch-and-bound algorithm for No C mapping[J].Circuits and Systems,2012,3(3):648-651.
  • 7易宏波,罗兴国,储慧琳,赵凯.Boltzmann-NSGAⅡ算法的NoC映射研究[J].计算机工程,2012,38(22):283-286. 被引量:2
  • 8SEPU′LVEDA M J,WANG J C,GOGNIAT G,et al.A multi-objective adaptive immune algorithm for multiapplication No C mapping[J].Analog Integr.Circ.&Sig.Process,2012,73(3):851-860.
  • 9吕兴胜,李光顺,吴俊华.基于多目标免疫算法的NoC映射优化[J].计算机工程,2015,41(4):316-321. 被引量:4
  • 10SAHU P K,MANNA K,SHAN T,et al.A constructive heuristic for application mapping onto mesh based Network-on-Chip[J].Journal of Circuits,Systems,and Computers,2015,24(8):126-155.

二级参考文献22

  • 1Jena R, Sharraa G. A Multi-objective Evolutionary Algorithm Based Optimization Model for Network-on-Chip Synthesis[C]// Proc. of International Conference on Information Technology. Las Vegas, USA: [s. n.], 2007: 977-982.
  • 2Sepulveda J, Pires R, Strum M, et al. A Multi-objective Adaptive Immune Algorithm for NoC Mapping[C]//Proc. of the 17th 1FIP/ IEEE International Conference on Very Large Scale Integration. Florianopolis, Brazil: [s. n.], 2009: 193-196.
  • 3Ababei C, Kia H S, Prakash Y. Energy and Reliability Oriented Mapping for Regular Network-on-Chip[C]//Proc. of NOCS'11. Pittsburgh, USA:[s. n.], 2011: 121-128.
  • 4Arjomand M, Sarbazi-Azad H, Amiri S. Multi-objective Genetic Optimized Multiprocessor SoC Design[C]//Proc. of SOC'08. Tampere, Finland: [s. n.], 2008: 1-4.
  • 5Silva M V C, Nedjah N, Mourelle L D M. Optimal Application Mapping on NoC Infrastructure Using NSGA-II and MicroGA[C]// Proc. of Conference on Intelligent Engineering Systems. [S. 1.]: IEEE Press, 2009: 83-88.
  • 6Sepulveda J, Strum M, Wang Jiang-Chau. A Multi-objective Approach for Multi-application NoC Mapping[C]//Proc. of LASCAS'11. Bogota, Colombia: [s. n.], 2011: 1-4.
  • 7Ogras U Y, Marculescu R. Analytical Router Modeling for Networks-on-Chip Performance Analysis[C]//Proc. of Design Automation Symposium. San Diego, USA: [s. n.], 2007: I-6.
  • 8Hu Jingcao, Marculescu R. Energy-aware Communication and Task Scheduling for Network-on-Chip Architectures Under Real- time Constraiats[C]//Proc. of Conference on Design Automation and Test. Paris, France: [s. n.], 2004: 234-239.
  • 9Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGAII [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 10Choudhary N, Gaur M S, Laxmi V, et al. Genetic Algorithm Based Topology Generation for Application Specific Network-on-Chip [ C ]//Proceedings of IEEE International Symposium on Circuits and Systems. Washington D. C. ,USA :IEEE Press ,2010:3156-3159.

共引文献4

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部