期刊文献+

Lagrange方程应用于连续介质力学 被引量:5

Lagrange Equation Applied to Continuum Mechanics
下载PDF
导出
摘要 如何将Lagrange方程应用于连续介质力学,一直是学术界关注的理论课题。应用变导的概念和运算法则,研究Lagrange方程中的求导的性质,进而将Lagrange方程应用于线性弹性动力学和非线性弹性动力学,并且给出相应的算例。结果表明,借鉴变积分学来解决将Lagrange方程应用于连续介质力学的问题是可行的。 How to apply the Lagrange equation to the continuous medium mechanics has been a theoretical issue of academic circles. Using variational derivative concepts and operational rules, the properties of variational derivative in Lagrange equation are studied. The Lagrange equation is applied to linear elastic dynamics and nonlinear elastic dynamics, and some corresponding numerical examples are given. The result shows that it is a feasible way to solve the problem of the application of Lagrange equation to the mechanics of continuous media by using the variational integral calculus.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期597-607,共11页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(10272034)资助
关键词 连续介质力学 LAGRANGE方程 变导 线性弹性动力学 非线性弹性动力学 continuum mechanics Lagrange equation variational derivative linear elastic dynamics nonlinear elastic dynamics
  • 相关文献

参考文献16

二级参考文献64

  • 1Ren Qingsheng, Zeng Jin & Qi Feihu(Dept. of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200030, P. R. China,Dept. of Applied Mathematics, Shanghai Jiaotong University, Shanghai 200030, P. R. China).Optimization of Additively Decomposed Function with Constraints[J].Journal of Systems Engineering and Electronics,2002,13(4):85-90. 被引量:2
  • 2雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望[J].机械设计,2006,23(9):1-3. 被引量:37
  • 3梅凤翔 刘端 等.高等分析动力学[M].北京:北京理工大学出版社,1991.693-694.
  • 4刘辛军 汪劲松 等.一种新型龙门式五轴联动混联机床的概念设计.ISAMT2001论文集[M].南京,2001.493-496.
  • 5Santill R M. Foundations of Theoretical Mechanics Ⅱ. New York: Springer-Verlag, 1983
  • 6Courant R, Hillbert D. Methods of Mathematical Physics Ⅰ. New York: Interscience, 1953
  • 7Synge J L. Classical Dynamics. Berlin: Springer-Verlag, 1960
  • 8Rosenberg R. Analytical Dynamics of Discrete Systems. New York: Plenum Press. 1977
  • 9Goldstein H. Classical Mechanics. 2nd ed. Addison-Wesley, 1980
  • 10Santilli R M. Foundations of Theoretical Mechanics I. New York: Springer-Verlag, 1978

共引文献108

同被引文献85

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部