摘要
城市在其发展过程中逐渐形成居住区、工业区和商业区等不同的功能区。识别这些功能区并理解其分布特征,对于把握城市结构以及制定和使用科学合理的规划具有重要作用。本研究基于2008年4月北京市连续一周的7797余万条公交IC卡刷卡数据,将其转换为每个公交站台流量的二维时间序列数据,结合居民日常出行行为研究,利用数据挖掘技术,构建了基于公交刷卡数据和兴趣点的城市功能区识别模型,并将识别结果在交通分析小区尺度上汇总。研究结果显示,利用城市功能区识别模型,通过冗余数据的筛除和特征的创建实现对数据的有效降维,并选用期望最大化算法对处理后的数据进行聚类分析,结合居民日常出行相关特征和兴趣点分布数据对聚类结果进行诠释,可以快速有效地识别出与北京市土地利用现状地图具有一定匹配度的北京市各功能区。本研究的方法可以辅助规划人员和公众有效识别和理解复杂的城市空间结构,对城市地理及规划研究具有重要的理论和实践价值。
Cities form various functional zones including residential zone, industrial zone, commercial zone, etc, during their development process. It is important for urban planners to identify different functional zones and understand their spatial distribution characteristics in order to better comprehend city structure and formulate and use rational urban plans. In this research, we used 77,976,010 bus smart card data(SCD) records of Beijing City in one week in April 2008 and converted them into two-dimensional time series data of each bus platform. Then, by applying the data mining techniques in combination with citizens' daily travel behavior, we established the DZoF(discovering zones of different functions) model based on SCD(smart card data) and POIs(points of interest), and pooled the results at the TAZ(traffic analysis zone) level. The results suggest that DZoF model and cluster analysis based on dimensionality reduction and EM(expectationmaximization) algorithm can identify functional zones that well match the actual land uses in Beijing. The methodology in the present research can help urban planners and the public understand the complex urban spatial structure and contribute to the academia of urban geography and urban planning.
出处
《城市规划》
CSSCI
北大核心
2016年第6期52-60,共9页
City Planning Review
关键词
公交IC卡刷卡数据
兴趣点
出行行为
功能区识别
北京
bus smart card data(SCD)
POIs
travel behavior
identification of functional zones
Beijing