期刊文献+

自底向上的图像显著目标检测研究 被引量:13

Bottom-up image saliency target detection via bottom-up
原文传递
导出
摘要 针对传统的图像显著性检测造成显著目标误检的问题,本文通过采用Harris角点检测算子以及计算机形态学中的凸包理论,得到改进的中心先验图像显著性检测系数,进而利用小波变换(WT)在时域和频域上的局部特征信息表征能力得到局部特征显著图像,以及采用谱残差(SR)的图像处理方法获取全局特征的显著图像,提出一种基于改进图像中心先验理论的自底向上的图像显著目标检测方法。实验结果表明,与现有的图像显著性检测模型相比,本文提出的模型检测准确率更好,检测效果也更好。 Aiming at the problem that the traditional image saliency target detection can cause false detection for saliency target,in this paper we find the center of target by Harris corner detection and convexhull of computer morphology theory, and built the advanced center-prior saliency detection model. Then, we get the local feature saliency image by the wavelet transform in the time domain and frequency do- main on the local characteristic information representation ability, and obtain the global features' saliency image by spectral residual to deal with target images. Finally, we establish an advanced center-prior saliency detection model which is based on bottom-up image saliency target detection methods. The experi- mental results show that the model proposed in this paper is effective in detecting significant object,the target detection rate is higher,and the detection of significant target is more complete.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第8期886-892,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61203261 61273277) 山东省自然科学基金(ZR2012FQ003) 浙江大学CAD&CG国家重点实验室开放课题(A1514) 南京理工大学高维信息智能感知与系统教育部重点实验室创新基金(201501)资助项目
关键词 中心先验 小波变换(WT) 谱残差(SR) 图像显著性 目标检测 center-prior wavelet transform (WT) spectral residual (SR) images saliency target detection
  • 相关文献

参考文献29

  • 1Itti L. Models of bottom-up E D ]. California: Computat Technol, Pasadena, 2000. and top-down visual attention Neur.
  • 2Syst., California Inst. Itti L, Koch C, Niebur E. Model of saliency-based visual attention for rapid scene analysisl-J]. IEEE Trans. Pattern Anal. Mach. Intell, 1998,20(11) : 1254-1259.
  • 3Harel J, Koch C, Perona P. Graph-based visual saliency [J]. Advances in neural information processing systems, 2007,19:545-552.
  • 4Yang C, Zhang L. Saliency detection via graph-based manifold rankingl-A~. Proc. of Computer Vision and Pat- tern Recognition, IEEE Conference on l-C]. 2013, 3166- 3173.
  • 5Hou X, Zhang L. Saliency detection= A spectral residual approachrA]. Proc. of Computer Vision and Pattern Rec- ognition, IEEE Conference onEC]. 2007,1-8.
  • 6Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[A~. Proc. of Computer Vision and Pattern Recognition, IEEE Conference on[C]. 2009, 1 597- 1604.
  • 7Maybank S. A probabilistic definition of salient regions forimage matching[J]. Nuerocomputing, 2013,120 ( 23 ) : 4- 14.
  • 8Yang J,Yang M. Top-down visual saliency via joint CRF and dictionary learningI-A-I. Proc. of Computer Vision and Pattern Recognition, IEEE Conference on~C~. 2012,2296- 2303.
  • 9Cui J,Xie J. Corner detection on finger vein images using the improved Harris algorithmI-J~. Optik, 2014,125 ( 17 ) 4668-4671.
  • 10Yang C, Zhang L. Graph-regularized saliency detection with convex-hull-based center prior[J]. IEEE Signal Pro- cessing Letters,2013,20(7) ..637-640.

二级参考文献70

共引文献15

同被引文献98

引证文献13

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部