期刊文献+

强化水解酸化/MBR治理表面处理行业综合废水 被引量:1

Treatment of Surface Industrial Comprehensive Wastewater by Biofilm Enhanced Hydrolysis Acidification/MBR Process
原文传递
导出
摘要 表面处理行业废水水质复杂,单靠常规的生化处理很难稳定达标(COD<80 mg/L)。采用生物膜强化水解酸化/MBR工艺对综合废水进行处理,研究不同浓度重金属离子(Cu^(2+)、Ni^(2+)、Cr^(6+))冲击负荷下该工艺对COD、VFAs的去除效果,并与常规水解酸化/MBR组合工艺进行对比。结果表明,随着重金属浓度的升高,两种工艺对COD和VFAs的去除效果具有显著性差异。在30 mg/L的金属离子冲击下,生物膜强化工艺和常规工艺对COD的去除率分别为78.5%和67.2%,平均出水COD分别为64和97 mg/L,生物膜强化工艺的处理效果更好,且出水水质达到了行业排放标准。 In order to control the pollution of wastewater from the surface treatment industry, the discharge of COD should be less than 80 mg/L, it is difficult to achieve this standard by conventional bio- chemical treatment. Therefore, the biofilm enhanced hydrolysis acidification/MBR process was used to treat the surface industrial comprehensive wastewater. The removal efficiency of COD and VFAs by the combined process under shock loads of different concentrations of heavy metal ions (Cu2~ , Ni2~ and Cr6+) was investigated and compared with that by conventional hydrolysis acidification/MBR process. The results showed that with the increase of heavy metal concentration, the removal efficiency of COD and VFAs was significantly different between the two combined processes. Under the shock of metal ions at a concentration of 30 mg/L, the removal rates of COD by the combined biofilm process and the convention- al combined process were 78.5% and 67.2%, with the average effluent COD concentration of 64 mg/L and 97 mg/L, respectively. The combined biofilm process had a better treatment effect and could achieve the industrial discharge standards.
出处 《中国给水排水》 CAS CSCD 北大核心 2016年第15期32-36,共5页 China Water & Wastewater
基金 国家水体污染控制与治理科技重大专项(2013ZX07201007-003-02)
关键词 表面处理行业综合废水 生物膜 水解酸化 MBR 处理效能 surface industrial comprehensive wastewater biofilm hydrolysis acidification MBR treatment efficiency
  • 相关文献

参考文献10

  • 1王文星.电镀废水处理技术研究现状及趋势[J].电镀与精饰,2011,33(5):42-46. 被引量:82
  • 2尚会来,张雷,张静蓉.电镀废水处理技术展望[J].给水排水,2012,38(S1):260-263. 被引量:11
  • 3Mandal T, Maity S, Dasgupta D, et al. Advanced oxida- tion process and biotreatment: Their roles in combined industrial wastewater treatment [ J ]. Desalination, 2010, 250 ( 1 ) : 87 - 94.
  • 4Saha B, Orvig C. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents [ J ]. Coordination Chemistry Reviews, 2010, 254 ( 23/24 ) : 2959 - 2972.
  • 5Orozco A M F,Contreras E M,Zaritzky N E. Cr(VI) re- duction capacity of activated sludge as affected by nitro- gen and carbon sources, microbial acclimation and cell multiplication[ J ]. J Hazard Mater, 2010,176 ( 1/3 ) : 657 - 665.
  • 6陆道峰,徐乐中,郭永福,吴伟.水解酸化+改良型A/O工艺处理电镀废水尾水效能研究[J].水处理技术,2014,40(9):89-92. 被引量:6
  • 7Zielinski M, Zielifiska M, Debowski M. Application of microwave radiation to biofilm heating during wastewater treatment in trickling filters [ J ]. Bioresour Technol, 2013,127( 1 ) :223 -230.
  • 8Scoma A, Varela-Corredor F, Bertin L, et al. Recovery of VFAs from anaerobic digestion of dephenolized olive mill wastewaters by electrodialysis [ J ]. Sep Purif Technol, 2015,159:81 -91.
  • 9Hong C, Chen Y, Xiong Z, et al. How does the entering of copper nanoparticles into biological wastewater treat- ment system affect sludge treatment for VFA production [J]. Water Res,2014,63(7):125 -134.
  • 10Jie W, Peng Y, Ren N, et al. Volatile fatty acids (VFAs) accumulation and microbial community struc- ture of excess sludge (ES) at different pHs [ J ]. Bioresour Techno1,2014,152( 1 ) : 124 - 129.

二级参考文献28

共引文献92

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部