期刊文献+

融合社会力与人工蜂群的人群疏散仿真方法 被引量:4

Crowd Evacuation Simulation Method Combining Social Force with Artificial Bee Colony
下载PDF
导出
摘要 针对复杂场景下的人群疏散运动,提出一种改进的社会力模型与人工蜂群算法相结合的方法.利用改进的人工蜂群算法进行实时宏观路径规划,底层结合修正的社会力模型指导个体运动.考虑到视角对个体运动的影响,在原始社会力模型基础上引入视觉影响因子,同时消除互不可见个体间的社会心理力;依据行人疏散过程中出现的结伴、从众现象,在人工蜂群算法中引入分组策略,同时将疏散时间作为适应度评判标准,符合现实疏散中行人的心理特征,提高了算法的收敛速度及寻优精度.实验结果表明,该方法下人群运动流畅自然,能够实现更真实的仿真效果,对紧急情况下的人群疏散具有指导意义. Contrapose the crowd evacuation movement under complex scene, an improved method combine social force model with artificial bee colony algorithm is proposed. Using the improved artificial bee colony algorithm for real-time macro path planning, the underlying amendatory social force model to guide individual movement. Considering the influence of visual angle on the movement of individuals,introducing the visual impact factor based on the original social force model, at the same time, eliminating invisible indi- vidual's social psychological force between each other. According to the companion and conformity phenomenon appeared in pedestrian evacuation, introducing the grouping strategy to artificial bee colony algorithm, meanwhile, evacuation time is used as criterion of the fitness evaluation. It's in accord with the psychological characteristics of pedestrian evacuation in reality, and improves the algorithm convergence and optimization accuracy. The experimental result shows that with this method, the crowd movement is smooth and natural, can achieve a more real simulation effect, and has the guiding significance for the emergency evacuation.
作者 徐斌 刘弘
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第8期1725-1729,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272094 61472232 61572299 61402269 61402270)资助 山东省自然科学基金项目(ZR2014FQ009)资助 山东省高等学校科技计划项目(J13LN13)资助
关键词 人群疏散 社会力模型 路径规划 人工蜂群算法 crowd evacuation social force model path planning artificial bee colony algorithm
  • 相关文献

参考文献4

二级参考文献49

  • 1武小康,周利锋.行人仿真在轻轨车站应急疏散领域的应用[J].重庆交通大学学报(自然科学版),2012,31(4):772-776. 被引量:11
  • 2杨小芹,黎明,周琳霞.基于熵的双群体遗传算法研究[J].模式识别与人工智能,2005,18(3):286-290. 被引量:11
  • 3张琦,韩宝明,李得伟.地铁枢纽站台的乘客行为仿真模型[J].系统仿真学报,2007,19(22):5120-5124. 被引量:19
  • 4Karaboga D.An Idea Based on Honey Bee Swarm for Numerical Optimization[R].Kayseri,Turkey:Erciyes University,Engineering Faculty,Computer Engineering Department,2005.1-10.
  • 5Karaboga D,Basturk B.A powerful and efficient algorithm for numerical function optimization: artificial bee colony(ABC)algorithm[J].Journal of Global Optimization,2007,39(3):459-471.
  • 6Karaboga D,Basturk B.On the performance of artificial bee colony(ABC)algorithm[J].Applied Soft Computing,2008,8(1):687-697.
  • 7Karaboga D,Basturk B.Artificial bee colony(ABC)optimization algorithm for solving constrained optimization problems.LNCS:Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing[C].Berlin:Springer-Verlag,2007,4529.789-798.
  • 8Karaboga D,Akay B B.Artificial bee colony algorithm on training artificial neural networks.Proceedings of IEEE 15th Signal Processing and Communications Applications Conference[C].CA:IEEE Press,2007.1-4.
  • 9Karaboga D,Akay B B,Ozturk C.Artificial bee colony(ABC)optimization algorithm for training feed-forward neural networks.LNCS:Modeling Decisions for Artificial Intelligence[C].Berlin:Springer-Verlag,2007,4617.318-319.
  • 10Srinivasa Rao R,Narasimham S V L,Ramalingaraju M.Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm[J].International Journal of Electrical Power and Energy Systems Engineering,2008,1(2):709-715.

共引文献37

同被引文献28

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部