期刊文献+

基于高斯混沌变异和精英学习的自适应多目标粒子群算法 被引量:22

Adaptive multi-objective particle swarm optimization with Gaussian chaotic mutation and elite learning
原文传递
导出
摘要 为平衡多目标粒子群的全局和局部搜索能力,提出一种基于高斯混沌变异和精英学习的自适应多目标粒子群算法.首先,提出一种新的种群收敛状态检测方法,自适应调整惯性权重和学习因子的值,以达到探索和开发的最佳平衡.然后,当检测到种群收敛停滞时,采用一种带有高斯函数和混沌特性的变异算子协助种群跳出局部最优,以增强全局搜索能力.最后,外部档案中的精英解相互学习,增强算法的局部搜索能力.在多目标标准测试问题上的仿真结果表明了所提出算法的有效性. In order to keep the balance between the global and local searching abilities, an adaptive multi-objective particle swarm optimization algorithm based on Gaussian chaotic mutation and elite learning is proposed. Firstly, a method to detect the convergence state is proposed, then the inertia weight and acceleration coefficients are adjusted adaptively. Then, when the swarm is judged to be in the stagnation state, a mutation operator with the features of Gaussian function and chaotic sequence is proposed to help the swarm jump out from local optimum and enhance the global search. Moreover, the elite solutions in the external archive learn with each other to enhance the local search ability. The simulations on several standard test multi-objective problems show the effectiveness of the proposed method.
作者 韩敏 何泳
出处 《控制与决策》 EI CSCD 北大核心 2016年第8期1372-1378,共7页 Control and Decision
基金 国家重点基础研究发展规划项目(2013CB430403) 国家自然科学基金项目(61374154)
关键词 变异 精英学习 自适应 多目标优化 粒子群 mutation elite learning adaptive adjustment multi-objective optimization particle swarm optimization
  • 相关文献

参考文献18

  • 1公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289. 被引量:399
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Piscataway: IEEE, 1995: 1942-1948.
  • 3Reyes-Sierra M, Coello C C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. Int J of Computational Intelligence Research, 2006, 2(3): 287-308.
  • 4陈民铀,张聪誉,罗辞勇.自适应进化多目标粒子群优化算法[J].控制与决策,2009,24(12):1851-1855. 被引量:54
  • 5Tripathi P K, Bandyopadhyay S, Pal S K. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients[J]. Information Sciences, 2007, 177(22): 5033-5049.
  • 6Hu W, Yen G. Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system[J]. IEEE Trans on Evolutionary Computation, 2015(19): 1-18.
  • 7夏立荣,李润学,刘启玉,耿志强.基于动态层次分析的自适应多目标粒子群优化算法及其应用[J].控制与决策,2015,30(2):215-221. 被引量:25
  • 8申晓宁,郭毓,陈庆伟,胡维礼.一种子群体个数动态变化的多目标优化协同进化算法[J].控制与决策,2007,22(9):1011-1016. 被引量:13
  • 9Coello C A C, Pulido G T, LechugaMS. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
  • 10Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(6): 1362-1381.

二级参考文献53

共引文献480

同被引文献174

引证文献22

二级引证文献500

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部