期刊文献+

基于最优高斯随机游走和个体筛选策略的差分进化算法 被引量:27

Differential evolution based on optimal Gaussian random walk and individual selection strategies
原文传递
导出
摘要 针对差分进化算法开发能力较差的问题,提出一种具有快速收敛的新型差分进化算法.首先,利用最优高斯随机游走策略提高算法的开发能力;然后,采用基于个体优化性能的简化交叉变异策略实现种群的进化操作以加强其局部搜索能力;最后,通过个体筛选策略进一步提高算法的探索能力以避免陷入局部最优.12个标准测试函数和两种带约束的工程优化问题的实验结果表明,所提出的算法在收敛速度、算法可靠性及收敛精度方面均优于EPSDE、Sa DE、JADE、BSA、Co Bi DE、GSA和ABC等算法,在加强算法探索能力的同时能够有效地提高算法的开发能力. To solve the problems of poor performance in exploitation of the differential evolution(DE) algorithm, a new DE algorithm with fast convergence rate is proposed. Firstly, the optimal Gaussian random walk strategy is used to improve the exploitation ability of the algorithm. Then, the simplified crossover and mutation strategy based on the individuals' optimization performance is employed to realize the evolution operation so as to improve the performance of local search. Finally, the individual selection strategy is proposed to avoid local optimum and enhance the exploration performance. Experimental results of 12 unconstrained benchmark functions and two constrained engineering design optimization problems show that the proposed algorithm is superior to the algorithm of EPSDE, Sa DE, JADE, BSA, Co Bi DE,GSA and ABC in terms of convergence rate, stability and convergence accuracy. The proposed algorithm can effectively enhance the exploration performance and improve the exploitation ability.
出处 《控制与决策》 EI CSCD 北大核心 2016年第8期1379-1386,共8页 Control and Decision
基金 航空科学基金项目(20105196016) 中国博士后科学基金项目(2012M521807)
关键词 差分进化 无约束优化 约束优化 高斯随机游走 个体筛选 differential evolution unconstrained optimization constrained optimization Gaussian random walk individual selection
  • 相关文献

参考文献21

  • 1Price K, Storn R, Lampinen J. Differential evolution: A practical approach to global optimization[M]. Berlin: Springer-Verlag, 2005: 1-24.
  • 2李牧东,赵辉,翁兴伟.具有广泛学习策略的回溯搜索优化算法[J].系统工程与电子技术,2015,37(4):958-963. 被引量:9
  • 3Yang M, Li C H, Cai Z H, et al. Differential evolution with auto-enhanced population diversity[J]. IEEE Trans on Cybernetics, 2015, 45(2): 302-315.
  • 4周晓根,张贵军,梅珊,明洁.基于抽象凸估计选择策略的差分进化算法[J].控制理论与应用,2015,32(3):388-397. 被引量:8
  • 5Fan H Y, Lampinen J. A trigonometric mutation operation to differential evolution[J]. J of Global Optimization, 2003, 27(1): 105-129.
  • 6Mallipeddia R, Suganthana P N, Panb Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011, 11(2): 1679-1696.
  • 7Civicioglu P. Backtracking search optimization algorithm for numerical optimization problems[J]. Applied Mathematics and Computation, 2013, 219(15): 8121-8144.
  • 8Qin A, Suganthan P. Self-adaptive differential evolution algorithm for numerical optimization[C]. IEEE Congress of Evolution on Computation(CEC 2005). Edinburgh: IEEE, 2005: 1785-1791.
  • 9Zhang J, Arthur C. JADE: Adaptive differential evolution with optional external archive[J]. IEEE Trans on Evolution Computation, 2009, 13(5): 945-958.
  • 10Wang Y, Li H X, Huang T W, et al. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting[J]. Applied Soft Computing, 2014, 18: 232-247.

二级参考文献39

  • 1Holland J. Adaptation in natural and artificial systems [M].Cambridge,MA:MIT Press, 1992.
  • 2Dorigo M, Stutzle T. Ant colony optimization[A]. Cambridge,MA:MIT Press, 2004.
  • 3Kennedy J,Eberhart R. Particle swarm opt'imization[C]//Proc.of the IEEE International Con ference on Neural Networks ,1995:1942 - 1948.
  • 4Liang J J, Qin A K,Suganthan P N, et al. Comprehensivelearning particle swarm optimizer for global optimization of mul-timodal functions[J]. IEEE Trans, on Evolutionary Computa-tion ,2006,10 (3):281 -295.
  • 5Price K V, Storn R, Lampinen J. Differential evolution : apractical approach to global optimization[A], Berlin:SpringerPress, 2005.
  • 6Zhang J Q, Sanderson A C. SADE: adaptive differential evolu-tion with optional external archive[J]. IEEE Trans, on Evolu-tionary Computation , 2009 ) 13(5) : 945 - 958.
  • 7Karaboga D,Akay B. A comparative study of artificial bee colo-ny algorithm [ J ]. Applied Mathematics and Computation,2009,214(12):108 - 132.
  • 8Yang X S, Deb S. Cuckoo search via levy flights[C] // Proc. ofthe World Congress on Nature and Biologically Inspired Com-puting , 2009 :210 - 214.
  • 9Seyedali M,Seyed M M,Andrew L. Grey wolf optimizer[J].Advances in Engineering Software . 2014, 69 :46 - 61.
  • 10PinarC. Backtracking search optimization algorithm for numeri-cal optimization problems[J]. Applied Mathematics and Com-putation ,2013, 219(15):8121 -8144.

共引文献15

同被引文献178

引证文献27

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部