期刊文献+

考虑最优风电投标量的高载能用户电价决策模型 被引量:4

Price Decision Model of High-Load Users Considering Optimal Wind Bidding Strategy
原文传递
导出
摘要 由于风电的随机性和波动性等特点导致常规电源的调峰压力增大,并受到输电通道的制约,各地的弃风率逐年攀升。将日前市场风电最优投标与用户侧需求响应相结合,在日前市场以风电场利益最大为目标,通过报童模型求解出最优风电投标量;在需求侧采用适用于高载能用户的尖峰电价模型,令高载能用户分组分时段地参与需求侧响应。综合考虑风电消纳能力、电网利益、高载能用户投切成本与火电机组运行成本,在尖峰日和非尖峰日分别采取不同的多目标优化模型,考虑负荷、电网以及电价等约束,采用粒子群算法进行模型求解。结果表明,将最优风电投标量引入需求响应策略中可以降低系统成本,且用尖峰电价激励高载能用户可以实现削峰填谷、消纳风电的目的。 Due to randomness and fluctuation of wind power, pressure of regulating peak load is increasing. Because of restriction of transmission channel, wind power curtailment rate is increasing year by year. This paper, combining optimal wind bidding strategy in day-ahead market(DAM) and demand response(DR), uses newsboy model to solve optimal wind bidding with maximized profit of wind power plant as objective. In demand side, high-load users use critical peak pricing(CPP) model to participate in demand response in different groups and time slots. Objective functions contain wind power accommodation level, power grid profit, operation cost of high-load users and heat-engine plant. Considering constrains of users, grid and price, particle swarm optimization(PSO) is used to solve different multi-objection models in CPP and NCPP days. Simulation results show that by combination of optimal wind bidding and DR, system's cost is reduced. And applying CPP to high-load users can avoid peak load and enhance wind power accommodation level.
出处 《电网技术》 EI CSCD 北大核心 2016年第8期2265-2272,共8页 Power System Technology
基金 "国网甘肃省电力公司科技项目(52272214003Y)"项目的资助
关键词 风电投标 高载能用户 尖峰电价 粒子群优化 wind bidding strategy high-load users critical peak pricing particle swarm optimization
  • 相关文献

参考文献20

二级参考文献181

共引文献852

同被引文献61

  • 1刘严,谭忠富,乞建勋.峰谷分时电价设计的优化模型[J].中国管理科学,2005,13(5):87-92. 被引量:64
  • 2US Department Of Energy. Benefits of demand response in electricity markets and recommendations for achieving them[R]. Washington DC, USA: US Department of Energy, 2006.
  • 3国家发展改革委,财政部.关于完善电力应急机制做好电力需求侧管理城市综合试点工作的通知(发改运行[2015]703号)[Z],2015.
  • 4Wolak F A. Residential customer response to real-time pricing: the Anaheimcritieal-peakpricingexperiment[R]. Berkeley, California, USA: University of California Energy Institute, 2007.
  • 5Piette M A, Watson D, Motegi N, et al. Automated critical peak pricing field tests: program description and results[R]. Berkeley, California, USA: Lawrence BerkeleyNationalLaboratory, 2006.
  • 6Wang Zhimin, Li Furong. Critical peak pricing tariffdesign for mass consumers in Great Britain[C]//Proceedings of IEEE Power and Energy Society General Meeting. Michigan, USA: IEEE, 2011: 1-6.
  • 7Chen W, Wang X, Petersen J, et al. Optimal scheduling of demand response events for electric utilities[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 2309-2319.
  • 8Park S C, Jin Y G, Song H Y, et al. Designing a critical peak pricing scheme for the profit maximize objective considering price responsiveness of customers[J]. Energy, 2015(83): 521-531.
  • 9Federal Energy Regulatory Commission. Assessment of demand response and advanced metering: 2006 staff report[R/Ol] . 200812016-03-20] . http://www.ferc.gov/legal/staff-reports/demand- response.pdf.
  • 10张钦,王锡凡,王建学,冯长有,刘林.电力市场下需求响应研究综述[J].电力系统自动化,2008,32(3):97-106. 被引量:408

引证文献4

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部