期刊文献+

混合微结构分析方法及其在图像检索中的应用

Analysis Based on Hybrid Micro-Structure and Its Application in Image Retrieval
下载PDF
导出
摘要 为解决图像检索领域现有的特征提取方法信息保留不足,检索方法单一,以及时效性不强等问题,对一些独特的图像分析方法进行讨论。方法:利用一种新的图像特征侦测方法生成图像特征库,然后利用该方法提取检索图像内容特征,经过相似性度量准则度量后,最终以度量排序结果进行图像检索。结果:实验结果表明,与多种流行的图像检索方法相比,无论是在查准率还是在查全率方面该方法都具备较好的性能。结论:所述图像检索方法利用一种新的各向异性的微结构分析方法实现了对图像特征的描述,有效提高了图像检索能力,具有很强的实用性。 The objective of this paper is to discuss a new approach to image retrieval with the progress in improving the time effectiveness and the ability of the extracted features in representing more information hidden in images. We use an anisotropy method based on hybrid micro-structure to detect features of images in constructing the feature library of all the images, and we compare features of the image to be retrieved with the features in library to obtain output. The experimental result shows that the method based on hybrid micro-structure analysis has a good performance to achieve higher ratio of recall and precision. The conclusion can be drawn that the hybrid micro-structure analysis is a practical and effective method to describe features of images in image retrieval.
机构地区 [ 西北工业大学
出处 《电脑与信息技术》 2016年第4期1-5,共5页 Computer and Information Technology
关键词 图像检索 微结构 特征提取 边缘方向 直方图 image retrieval micro-structure feature extraction edge orientation histogram
  • 相关文献

参考文献8

  • 1Kato T. Database architecture for content-l)ase(! image retrievalin Image Storage and Retrieval Systems [C], Proo SPIE, 1992.1662:112-123.
  • 2(yudivada V. N.,Raghavan V. V. (Content-based image retrievalsystems [J], IEEE Computer, 1995. 28(9),18-22.
  • 3Liu, G.H., Li, Z.Y., Zhang, L.. et al. Image retrieval based on mi-cro-structure descriptor [J], Pattern Recognition, 2011. 44(9):2123-2133.
  • 4张静,刘晓伟,刘安安,苏育挺,张哲.基于多特征自适应融合的目标跟踪算法[J].电子测量技术,2013,36(11):30-33. 被引量:12
  • 5Liu, G.H., Yang, J.Y.: Image retrieval based on the texton co-ocrurrence matrix[J]. Pattern Recognition 41,3521-3527 (2008).
  • 6Mahmoudi, F.,Shanbehzadeh, J” Eftekhari-Moghadam. A.M.,et al.: Image retrieval based on shape similarity hv edge orienta-tion autocorrelogram [J]. Pattern Recognition 36, 1725-1736(2003).
  • 77. Manjunath, B.S.,Ma, W.Y.: Texture features for browsing and re-trieval of image datalJ]. IEEE Trans. PAMI 18,837-842 (1996).
  • 88. Liu, G.H., Zhang, L” Hou,Y.K., et al.: Imae retrieval based onmulti-texton histogram [J]. Pattern Recognition 43, 2380-2389(2010).

二级参考文献10

  • 1PEREZ P,VERMAAK J,BLAKE A.Data fusion for visual tracking with particles[J].Proceedings of the IEEE,2004,92 (3):495-513.
  • 2TAKALA V,P1ETIKAINEN M.Multi-object tracking using color,texture and motion[C].Computer Vision and Pattern Recognition,2007:1-7.
  • 3IDO L,MICHAEL L,EHUD R.Tracking by affine kernel transformations using color and boundary cues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31 (1):164-171.
  • 4WANG J,YAGI Y.Integrating color and shape-texture features for adaptive real time object tracking[J].IEEE Trans Image Processing,2008,17 (2):235-240.
  • 5LI Y ZH,LU ZH Y,LI J.Panicle filter tracking method based on adaptive fusion of multiple features[C].Electric Information and Control Engineering,2011:4338-4341.
  • 6ISARD M,BLAKE A.Condensation:conditional density propagation for visual tracking[J].International Journal of Computer Vision,1998,29(1):5-28.
  • 7COLLINS R T,LIU Y X,LEORDEANU M.Online selection of discriminative tracking features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1631-1643.
  • 8STALDER S,GRABNER H,VAN GOO L.Beyond semi-supervised tracking:tracking should be as simple as detection,but not simpler than recognition[C].Computer Vision Workshops,2009:1409-1416.
  • 9ZHONG W,LU H CH,YANG M H.Robust object tracking via sparsity-based collaborative model[C].Computer Vision and Pattern Recognition (CVPR),2012:1838-1845.
  • 10孙尚龙,苏寒松.遮挡情况下基于卡尔曼滤波的运动目标跟踪[J].电子测量技术,2011,34(5):8-11. 被引量:5

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部