期刊文献+

基于改进简化粒子群优化的多目标跟踪算法 被引量:5

Multi-target Tracking Algorithm Based on Improved Simplified Particle Swarm Optimization
下载PDF
导出
摘要 基于多目标跟踪中的遮挡问题与互动社会模型间的联系,提出利用具有群间相互动态信息的多群社会模型改进简化粒子群优化算法,并用于多目标跟踪。在粒子群的多样性基础上初始化新群,预测目标速度。结合多群的优化,在连续性信息和目标之间修改简化粒子群优化的更新方程式,即更新目标速度和目标位置。为了适应目标进入和离开现场,构建初始化新群和终止迭代的策略。CAVIAR数据集、PETS2009数据集和Oxford数据集上的实验结果表明,相比于颜色粒子滤波算法、基于直方图的算法、局部稀疏法和高斯密度函数法,提出的算法在多目标跟踪精度方面至少提高了10%,大多数跟踪轨迹的数量增加了约8%,能鲁棒跟踪多个目标。 Based on the connection of occlusion problem in multi-target tracking and social interaction model, an improved Simplified particle Swarm Optimization(SSO) algorithm of multi-group social model with inter-group dynamic information is proposed,which is used for multi-target tracking. On the basis of diversity of particle swarm,a new swarm is initialized,predicting speed of target. Combined with multi-swarm optimization,the update equation of SSO is modified by continuity information and targets,that is the target speed and position are updated. In order to adapt the target' s entering and leaving the scene, strategies for initializing new swarms and terminating iteration are constructed. The effectiveness of the proposed algorithm is verified by experimental results on CAVIAR data set,PETS2009 data set and Oxford data set. Compared with color-based particle filtering algorithm, histogram-based algorithm, local sparse algorithm and Gaussian density function algorithm ,the proposed algorithm improves at least 10% in multi-object tracking accuracy, and the number of most tracking trajectory increases by about 8% . The proposed algorithm can track multiple targets robustly.
作者 程宪宝
出处 《计算机工程》 CAS CSCD 北大核心 2016年第8期282-288,共7页 Computer Engineering
关键词 多目标跟踪 简化粒子群优化 社会模型 终止策略 鲁棒 multi-target tracking Simplified particle Swarm Optimization (SSO) social model termination strategy robust
  • 相关文献

参考文献12

  • 1顾鑫,王华,李喆,李志国,王倩,邓志均.基于积分协方差矩阵的粒子滤波目标跟踪[J].激光与红外,2014,44(12):1384-1386. 被引量:6
  • 2Ning Jifeng,Zhang Lei,Zhang D,et al.Robust Mean-shift Tracking with Corrected Background-weighted Histogram[J].IET Computer Vision,2012,17(1):62-69.
  • 3Li Wenhui,Lin Yifeng,Fu Bo,et al.Cascade Classifier Using Combination of Histograms of Oriented Gradients for Rapid Pedestrian Detection[J].Journal of Software,2013,8(1):1532-1539.
  • 4王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 5Liu Baiyang,Huang Junzhou,Yang Lin,et al.Robust Tracking Using Local Sparse Appearance Model and Kselection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recogni-tion.Washington D.C.,USA:IEEE Press,2011:1313-1320.
  • 6刘晨光,程丹松,刘家锋,黄剑华,唐降龙.一种基于交互式粒子滤波器的视频中多目标跟踪算法[J].电子学报,2011,39(2):260-267. 被引量:15
  • 7Yazdian-Dehkordi M,Azimifar Z.Adaptive Visual Target Detection and Tracking Using Weakly Supervised Incremental Appearance Learning and RGM-PHD Tracker[J].Journal of Visual Communication and Image Representation,2015,35(2):1-11.
  • 8Andriyenko A,Roth S,Schindler K.An Analytical Formulation of Global Occlusion Reasoning for Multitarget Tracking[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2011:1839-1846.
  • 9Mus^icki D,Song Taek-lyul,Lee Hae-ho,et al.Correlated Doppler-assisted Target Tracking in Clutter[J].IET Radar Sonar&Navigation,2013,7(1):94-100.
  • 10Chung Yuk-ying,Wahid N.A Hybrid Network Intrusion Detection System Using Simplified Swarm Optimization[J].Applied Soft Computing,2012,12(9):3014-3022.

二级参考文献38

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 3I Haritaoglu, D I-Iarwood, L S Davis. W4: Real-lime surveil- lance of people and their aclivities[J ]. lhIEEE. Tram on PAMI, 2000,22(8) :809 - 830.
  • 4A M Elgammal, L S Davis. Probabilistic framework for seg- menting people under occlusion [ A ]. International Confelence on Computer Vision[C]. Vancouver, Canada: IEEE Computer Society,2001.145 - 152.
  • 5T Zhao, R Nevalia. Tracking multiple humans in complex situa tions[ J]. 1EEE Tram on PAMI,2004,26(9) : 1208 - 1221.
  • 6M Isard,A Blake.A mixed-store condensation tracker with au tomatic model-switching[ A]. International Conference on Com puter Vision[ C]. Washington, DC, USA: IEEE. Computer Soci ety, 1998.107 - 112.
  • 7M Isard, A Blake. CONDENSATION (Conditional density propagation for visual tracking) [ J ]. International Journal on Computer Vision, 1998,1 (29):5- 28.
  • 8J S Liu, R Chen. Sequential monte carlo methods for dynamic systems[J]. Jotlmal of Amenican Statistical Association, 1998,.93(443) : 1032 - 1044.
  • 9M Isard, J MacComfick. BraMBLe: a Bayesian mulfiple-blob tracker[ A]. International Conference on Computer Vision[ C ]. Vancouver,Canada: IEEE. Computer Society,2001.34- 41.
  • 10A D Jepson,D J Fleet,T F Ei-Maraghi. Robust online appear ance models for visual llacking [ J ]. IEEE Trans on PAMI, 2003,25(10) : 1296 - 1311.

共引文献72

同被引文献32

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部