期刊文献+

具有二维状态转移结构的随机逻辑及其在神经网络中的应用 被引量:1

Stochastic Logics with Two-dimensional State Transfer Structure and Its Application in the Artificial Neural Network
下载PDF
导出
摘要 随机计算是一种特殊的基于概率数据码流的数学计算方法,其优点在于可以采用非常简单的数字逻辑完成复杂数学运算,从而大幅降低硬件实现成本。该文首先讨论了随机计算的基本原理和主要运算逻辑,论述了传统线性状态机的不足,并分析了一种2维状态转移拓扑结构,推导了通过2维有限状态机实现高斯函数的方法。在此基础上,提出一种随机径向基函数神经网络模型,其硬件实现成本非常低,而性能与传统神经网络相当。两类模式识别实验结果显示,所提出的随机径向基函数神经网络的输出值均方误差与相应结构传统神经网络的差别小于1.3%。FPGA实验结果显示,数据宽度为12位时,随机中间神经元的电路面积仅为传统插值查表结构的1.2%、坐标旋转数字计算方法(CORDIC)的2%。通过改变输入码流长度,该神经网络可以在处理速度、功耗和准确性之间作出平衡,具有应用灵活性,适用于对成本、功耗要求较高的应用如嵌入式、便携式、穿戴式设备。 Stochastic computing is a special algorithm that performs mathematical operations with probabilistic values of bit streams rather than traditional deterministic values. The main advantage of stochastic computing is its great simplicity of hardware arithmetic units for mathematical operations to reduce the circuit cost. This paper discusses the principle of the stochastic computing and its main arithmetic logic. It analyzes a two-dimension state transition topology structure, and discusses the Gaussian function implementation method based on the two-dimension Finite State Machin (FSM). Then, a low cost stochastic radial basis function neural network model is proposed. Results from two pattern recognition tests show that the difference of the mean squared error between the stochastic network output value and the corresponding deterministic network output value can be less than 1.3%. FPGA implementation results show that the hardware resource requirement of the proposed stochastic hidden neuron is only 1.2% of the corresponding deterministic hidden neuron with the interpolated look-up table, and is 2.0% of the CORDIC algorithm. The accuracy, speed and power of the stochastic network can be tradeoff dynamically. This network is suitable for the low cost and low power applications like embedded, portable and wearable devices.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第8期2099-2106,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61376028)~~
关键词 随机计算 人工神经网络 径向基函数 模式识别 Stochastic computing Artificial neural network Pattern recognition
  • 相关文献

参考文献3

二级参考文献30

  • 1欧阳继红,王仲佳,刘大有.具有动态加权特性的关联规则算法[J].吉林大学学报(理学版),2005,43(3):314-319. 被引量:16
  • 2Wang Shoujue,IJCNN'99
  • 3Saini H and Garg A K. Protection and restoration schemes in optical networks: a comprehensive survey[J]. International Journal of Microwaves Applications, 2013, 2(1): 5-11.
  • 4Wang A B, Wang N, Yang Y B, et al.. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser[J]. Journal of Lightwave Technology, 2012, 30(21): 3420-3426.
  • 5Esmail M A and Fathallah H. Physical layer monitoring techniques for TDM-Passive Optical Networks (PON): a survey[J]. IEEE Communications Surveys and Tutorials, 2013, 15(2): 943-958.
  • 6Li Tong-yan and Li Xing-ming. Novel alarm correlation analysis system based on association rules mining in telecommunication networks[J]. Information Sciences, 2010, 180(16): 2960-2978.
  • 7Cook J, Smith, D and Meier A. Coordinating fault detection, alarm management, and energy efficiency in a large corporate campus[C]. 2012 ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, CA, 2012: 83-93.
  • 8Li Tong-yah and Li Xing-ming. A LFP-tree based method for association rules mining in telecommunication alarm correlation analysis[J]. The Journal of China Universities of Posts and Telecommunications 2007, 14(1): 6-15.
  • 9Hubballi N, Biswas S, and Nandi S. Network specific false alarm reduction in intrusion detection system[J]. Security and Communication Networks, 2011, 4(11): 1339-1349.
  • 10Tjhai G C, Furnell S M, Papadaki M, et al.. A preliminary two-stage alarm correlation and filtering system using SOM neural network and K-means algorithm[J]. Computers & Security, 2010, 29(6): 712-723.

共引文献54

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部