期刊文献+

细菌纤维素/肝素复合物的制备与力学性能 被引量:1

Preparation and Mechanical Properties of Bacterial Cellulose/Heparin Composites
下载PDF
导出
摘要 采用浸泡和交联法将肝素(Hep)固定在细菌纤维素(BC)上,研究了BC/Hep复合物的结构与力学性能。傅立叶变换红外光谱结果表明,BC结构中出现了Hep的特征吸收峰;扫描电子显微镜和X射线衍射显示,浸泡或交联后,在Hep的作用下,BC的结构变得紧密,结晶度下降,晶粒尺寸增大,其中交联法制备的复合物的结构与结晶性能变化更为明显。拉伸性能实验表明,与纯BC相比,浸泡和交联制备的BC/Hep复合物力学性能增强,交联法制备的复合物力学性能优于浸泡法,Hep溶液浓度为1.5 g/100 m L时其拉伸强度最大,可达到177.82 MPa,与纯BC相比提高了76.3%。 Heparin was immobilized within bacterial cellulose by immersing and crosslinking to produce bacterial cellulose/heparin composites. The structure and mechanical properties of the composites were also studied. FTIR results show that the characteristicpeaks of heparin present in the structure of bacterial cellulose,SEM and XRD reveal that after immersing or crosslinking,under the effect of heparin,the microstructure of bacterial cellulose becomes more dense and has lower crystallinity and bigger crystallinesizes,the structure and crystallinity of the composite prepared by crosslinking method have more obvious changes. Tensileproperty test shows that immersing and crosslinking all can improve the mechanical properties of bacterial cellulose/heparin composites,and the improving effect of crosslinking method is better than that of immersing method. When the concentration of heparinsolution is 1.5 g/100 mL,the tensile strength of crosslinked composite comes up to the maximum value 177.82 MPa,increases by76.3% than that of the pure bacterial cellulose.
出处 《工程塑料应用》 CAS CSCD 北大核心 2016年第8期18-21,共4页 Engineering Plastics Application
基金 中央高校基本科研业务费专项基金项目
关键词 细菌纤维素 肝素 复合物 微观结构 力学性能 bacterial cellulose heparin composite microstructure mechanical property
  • 相关文献

参考文献1

二级参考文献14

  • 1周伶俐,孙东平,吴清杭,杨树林.Acetobacter xylinum NUST4合成细菌纤维素发酵条件的优化[J].微生物学通报,2005,32(6):96-99. 被引量:8
  • 2蔡正千.热分析.1990,北京:高等教育出版社,P34.
  • 3Jonas R, Farah LF. Production and application of microbial cellulose. PolymDegradStab, 1998, 59: 101-106.
  • 4Klemm D, Schumann D, Udhardt U, et ol. Bacterial synthesized cellulose -- artificial blood vessels for microsurgery. Prog Polym Sci, 2001, 26: 1561- 1603.
  • 5Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, et al. Factors affecting the yield and properties of bacterial cellulose. J lnd Microbiol Biotechnol, 2002, 29: 189- 195.
  • 6Czaja W, Romanovicz D, Brown RM. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 2004, 11: 403- 411.
  • 7Mihranyan A, Llagostera AP, Karmhag R, et al. Moisture sorption by cellulose powders of varying crystallinity, Int J Pharm, 2004, 269: 433 - 442.
  • 8Ross P, Mayer R, Bezinaan M. Cellulose biosynthesis and function in bacteria. Microbiol Rev, 1991, 55( 1 ) : 35 - 58.
  • 9Son H J, Kim HG, Kim KK, et al. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresource Technol, 2003, 86:215 - 219.
  • 10lmai T, Sugiyama J. Nanodomains of 1α and 1β cellulose in algal microfibrils. Macromolecules, 1998, 31 : 6275 - 6279.

共引文献18

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部