摘要
本文描述了Fell拓扑的结构与收敛条件,重新确立了关于随机集的Choquet定理在概率论中的重要作用,并提出了不变Choquet容量的概念.此外,利用环面上的双曲自同构和随机映射,具体构造了一个遍历的Choquet容量系统,且进一步探讨了这种系统的动力性态.
This paper contains a review of the Fell topology, reinstalls the roleof Choquet capacities in probability theory, and generalizes the notion of ergodicmeasures to the non-additive counterpart of ergodic Choquet capacities. Further, anergodic capacity system is constructed through a hyperbolic toral automorphism,with relevant dynamical properties explored.
出处
《纯粹数学与应用数学》
2016年第4期416-431,共16页
Pure and Applied Mathematics
基金
Partially supported by HRSA,US DHHS(H49MC00068)