期刊文献+

基于时空特征分析的短时交通流预测模型 被引量:10

A Short-Term Traffic Flow Prediction Model Based on Spatio-Temporal Characteristics Analysis
下载PDF
导出
摘要 交通流预测的实时性和准确性直接影响到交通流诱导系统的高效性,是智能交通领域研究的热点。为了进一步提高短时交通流预测的精度,提出一种基于时空特征分析的短时交通流预测模型。在分析路段时空相关性的基础上,利用云模型改进的遗传算法对支持向量机的参数进行优化,得到最优的支持向量机模型,并实现短时交通流预测。以长春市局部路网的实测数据为基础,验证了所提出模型的有效性和可行性。 The real-time and accuracy of traffic flow prediction directly affect the efficiency of traffic flow guidance system, which is a hot issue of intelligent transportation system research. In order to improve the accuracy of short-term traffic flow forecasting further, a short-term traffic flow prediction model based on spatio-temporal characteristics analysis was proposed. On the basis of spatio-temporal correlativity analysis of section, the parameters of support vector machine (SVM) were opti- mized by using the genetic algorithm improved by cloud model. At last, the optimal SVM model was obtained, and it realized the short-term traffic flow prediction. Based on the measured data of local road network in Changchun city, the feasibility and effectiveness of the proposed model were verified.
作者 田保慧 郭彬
出处 《重庆交通大学学报(自然科学版)》 CAS 北大核心 2016年第3期105-109,182,共6页 Journal of Chongqing Jiaotong University(Natural Science)
基金 河南省交通运输厅科技计划项目(2014G21)
关键词 交通运输工程 交通量预测 时空特征分析 云模型 遗传算法 支持向量机 traffic and transportation engineering traffic flow forecasting spatio-temporal characteristics analysis cloud model genetic algorithm support vector machine
  • 相关文献

参考文献10

二级参考文献86

共引文献1275

同被引文献76

引证文献10

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部