期刊文献+

基于SAE深度特征学习的数字人脑切片图像分割 被引量:6

Deep SAE Feature Learning Based Segmentation for Digital Human Brain Image
下载PDF
导出
摘要 针对目前基于数字人脑切片图像的分割算法较少,分割精度和有效性较低等不足,提出一种基于稀疏自编码器(SAE)深度特征学习的分割算法.在特征提取阶段,采用从粗到精两级方式对SAE进行训练,以增强模型学习到的深度特征的鉴别能力;在分类阶段,使用softmax分类器进行目标分割.对中国可视化人体(CVH)数据集的脑白质分割及三维重建的实验结果表明,相对于其他传统的手工特征(如图像强度特征、方向梯度直方图特征和主成分分析特征),SAE提取的图像深度特征具有更强的鉴别能力,显著地提高了分割精度. There are few algorithms for segmenting cryosection brain images, and most existing segmentation techniques presented limited precision and low efficiency. To address these problems, this paper proposed a novel deep feature learning-based segmentation algorithm using sparse autoencoder(SAE). At the stage of feature extraction, SAE is trained twice to enhance the discriminability of the deep-learned feature representations. At the stage of classification, a softmax classifier is used for segmenting different objects. Experimental results of white matter segmentation on the Chinese Visible Human(CVH) dataset and its 3-D reconstruction show that, the learned deep feature performs much better in discriminability compared with other representative hand-crafted features(such as intensity, histogram of oriented gradient and principal components analysis) and achieves higher recognition accuracy.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第8期1297-1305,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60903142 61190122) 中国博士后基金特别资助(2013T60841) 中央高校基本业务费项目(106112015CDJXY120003)
关键词 中国可视化人体数据集 脑组织分割 稀疏自编码器 深度特征 softmax分类器 Chinese visual human brain tissue segmentation sparse autoencoder deep-learning feature repre-sentations softmax classifier
  • 相关文献

参考文献4

二级参考文献50

  • 1张建伟,夏德深.高斯混合模型改进的活动轮廓模型MRI分割[J].计算机辅助设计与图形学学报,2005,17(12):2647-2653. 被引量:12
  • 2陈允杰,张建伟,韦志辉,夏德深,王平安.同时配准-分割脑MR图像的耦合变分模型[J].计算机辅助设计与图形学学报,2007,19(2):215-220. 被引量:6
  • 3陈健,田捷,薛健,戴亚康.多速度函数水平集算法及在医学分割中的应用[J].软件学报,2007,18(4):842-849. 被引量:14
  • 4张松海,陈韬,胡事民.从视频到Flash矢量动画的自动转换[J].计算机辅助设计与图形学学报,2007,19(5):667-671. 被引量:2
  • 5Verbeek J J, Vlassis N, Krose B. Efficient greedy learning of Gaussian mixture models [J]. Neural Computation, 2003, 15 (2) : 469-485.
  • 6Upcroft B, Kumar S, Ridley M, et al. Fast re-parameterisation of Gaussian mixture models for robotics applications [C] // Proceedings of the 2004 Australasian Conference on Robotics & Automation, Canberra, 2004:413-420.
  • 7Rajan K, Patnaik L M, Ramakrishna J. High-speed computation of the EM algorithm for PET image reconstruction [J]. IEEE Transactions on Nuclear Science, 1994, 41 (5): 1721-1728.
  • 8Held K, Kops E R, Krause B J, et al. Markov random field segmentation of brain MR images [J]. IEEE Transactions on Medical Imaging, 1997, 16(6) : 878-886.
  • 9Van Leemput K, Maes F, Vandermeulen D, et al. Automated model-based tissue classification of MR images of the brain [J]. IEEE Transactions on Medical Imaging, 1999, 18(10):897-908.
  • 10Dulyakarn P, Rangsanseri Y. Fuzzy c-means clustering using spatial information with application to remote sensing [C] // Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 2001:212-215.

共引文献33

同被引文献33

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部