期刊文献+

拟南芥耐盐基因ENH1在陆生植物中的进化

Evolution of Arabidopsis salt-tolerance gene ENH1 in land plants
原文传递
导出
摘要 [目的]ENH1是最近鉴定的拟南芥耐盐基因,编码一个叶绿体定位的蛋白,N末端具有一个PZD结构域,C末端具有一个RUBR结构域;功能上与活性氧自由基的脱毒有关,本文研究ENH1基因的进化历史和功能分化。[方法]从陆地植物基因组中获得同源蛋白,重建这个基因家族的系统发生,通过生物信息学手段研究其蛋白质结构域组织,蛋白质相互作用和表达谱。[结果]总共获得35个ENH1同源蛋白序列,大多数物种保持一个基因拷贝,系统发育上单子叶与双子叶被明确划分,并获得高度的支持,在进化过程EHN1蛋白获得了PDZ结构域。[结论]功能上,这个基因家族通过获得PZD结构域适应被子植物细胞的复杂功能要求,ENH1样基因可能涉及叶绿体的多种功能,此外,ENH1基因家族适合作为系统发育重建的分子标记。 [ Objective] To investigate the evolutionary history and functional differentiation of the ENH1 gene family that was recently characterized as a salt tolerance gene that encodes a chloroplast - localized protein with a PDZ domain at the N - termi- nal region and a rubredoxin (RUBR) domain in the C - terminal part ,functionally responsible for detoxification of reactive oxy- gen species resulting from salt stress. [ Methods ] ENH1 homologous proteins were obtained from land plants genomes. Bioinfor- matics approaches were used for investigating phylogeny, protein domain organizations, and protein network and expression pro- file. [ Results ] A total of 35 ENH1 homologous proteins were obtained. It was found that most of plant species maintain one gene copy, and all ENH1 -like genes were phylogenetically divided into dicots and monocots clades with strong bootstrap supports. EHN1 -like proteins obtained the PDZ domain during evolution. [ Conclusion] ENH1 genes adapted for the complex require- ment in angiosperm cells through obtaining the PDZ domain. ENH1 genes might participate in multiple chloroplast function. In addition, ENH1 genes were well suitable for phylogenetic reconstructing.
出处 《生物技术》 CAS CSCD 北大核心 2016年第4期348-352,324,共6页 Biotechnology
基金 江苏省自然科学基金面上项目("利用系统发育基因组学方法鉴别生物固氮基因的研究" No.BK20151269) 江苏省大学生实践创新训练计划项目("耐盐基因NKS1的系统发生与协同进化研究" No.201510304058Y "根瘤固氮基因网络的进化" No.201610304087Y)
关键词 ENH1样基因 耐盐性 进化 陆生植物 ENH1 - like genes salt tolerance evolution,land plants
  • 相关文献

参考文献19

  • 1Ullah A, Dutta D, Fliegel L. Expression and characterization of the SOS1 Arabidopsis salt tolerance protein [J]. Mol Cell Biochem. , 2016,415 ( 1 - 2) : 133 - 43.
  • 2Golldack D,Li C,Mohan H. Tolerance to drought and salt stress in plants unraveling the signaling networks[J]. Frontiers in Plant Sci- ence,2014,5 : 151. doi : 10. 3389/fpls. 2014. 00151.
  • 3Parihar P, Singh S, Singh R, et al. Effect of salinity stress on plants and its tolerance strategies: a review [ J 1. Environmental Science and Pollution Research,2015,22 (6) :4056 - 4075.
  • 4Zhu J, Fu X, Koo Y D, et al. An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response [J]. Molecular and Cellular Biology,2007,27 (14) : 5214 -5224.
  • 5Priekril B C, Kurtz D M, LeGall J, et al. Cloning and sequencing of the gene for rubrerythrin from Desulfovibrio vulgaris (Hildenborough) [ J]- Biochemistry, 1991,30 (46) : 11118 - 11123.
  • 6Fuh G, Pisabarro M T, Li Y, et al. Analysis of PDZ domain - ligand interactions using carboxyl - terminal phage display [J]. Journal of Biological Chemistry ,2000,275 ( 28 ) :21486 - 21491.
  • 7Goodstein D M, Shu S, Howson R, et al. Phytozome : a comparative platform for green plant genomics [J]. Nucleic Acids Research, 2012,40( Database issue) :Dl178 - 1186.
  • 8Sievers F, Higgins D G. Clustal Omega, accurate alignment of very large numbers of sequences [ J 1- Methods in Molecular Biology, 2014,1079:105 - 116.
  • 9Suyama M,Torrents D, Bork P. PAL2NAL: robust conversion of pro- tein sequence alignments into the corresponding eodon alignments [J]. Nucleie Acids Research, 2006,34 ( Web Server issue) : W609 -612.
  • 10Criseuolo A. morePhyML: improving the phylogenetie tree space exploration with PhyML 3 [ J 1. Molecular Phylogenetics and Evolu- tion,2011,61 (3) :944 - 948.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部