期刊文献+

含对称三角形腔的波导管中宽带低频隔声效应(英文)

Broadband insulation of low-frequency sound in a waveguide with symmetric triangle cavities
下载PDF
导出
摘要 研究一种含两个对称三角形腔的波导管中宽频带低频隔声效应.波导管的隔声频带下限与带宽分别可达到140Hz和2900Hz,且所调控声波最大波长是三角形腔的尺寸13.6倍.这种隔声效应源于三角形腔截面积与波导管宽度的差异而引起的交界面上的高声反射率.在此基础上,研究波导管的结构参数(如波导管的宽度、三角形腔的底边长度与高度)及不同类型的腔(Helmholtz腔、矩形腔与直角三角形腔)对低频隔声效果的影响.结果表明,三角形腔的截面积和波导管宽度的差异与低频隔声效果密切相关.此外,由于对结构的本征模式的抑制作用,直角三角形腔所对应的低频隔声频带最宽.所提出的结构具有高隔声、宽频带、结构简单易实现等优点,在声学领域具着一定的潜在应用价值. We report a broadband sound insulation effect through a waveguide with two triangle cavities.The lower cutoff frequency and bandwidth of the sound insulation could reach about 140 Hz and 2900 Hz,respectively,and the length of the triangle cavity is aboutλ/13.6.This phenomenon arises from high acoustic reflectance owing to the difference between the cross-sectional areas of the waveguide and triangle cavities.In addition,we also investigate the influences of the parameters of waveguide,such as the wide of the waveguide,the base and height of both triangle cavities,on the characteristics of the sound insulation.Besides,the sound insulation in the waveguide with other types of cavities(Helmholtz cavities,rectangle cavities,and right triangle cavities)on the sound insulation is also discussed in detail.The results show that the performance of sound insulation is closely related to the difference between the cross-sectional areas of the waveguide and triangle cavities,and the wider bandwidth of the sound insulation is obtained by using the right triangle cavities owing to the inhibition of the eigen modes.The design has the advantages of high sound insulation,broad bandwidth,and simple structure as well as being easy to be achieved.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期619-626,共8页 Journal of Nanjing University(Natural Science)
基金 Major Program of National Natural Science Foundation of China(51239005) National Natural Science Foundation of China(11404147) Jiangsu Provincial Natural Science Foundation(BK20140519) China Postdoctoral Science Foundation(2015M571672) Research Fund for Advanced Talents of Jiangsu University(11JDG118) Training Project of Young Backbone Teachers of Jiangsu University
关键词 声波 隔声 波导管 sound waves sound insulation waveguide cavity
  • 相关文献

参考文献22

  • 1陆慧颖,宋刚永,程强.二维声学超材料透镜的设计与实验[J].南京大学学报(自然科学版),2015,51(6):1114-1119. 被引量:4
  • 2Lu H Y, Song G Y,Cheng Q. Design and measurements of a two dimensional metamaterial acoustic lens. Journal of Nanjing University(Natural Sciences), 2015, 51(6) :1115-1119.
  • 3余思远,张恒,卢明辉.声表面波声子晶体中的能带结构及带隙类型[J].南京大学学报(自然科学版),2015,51(6):1107-1113. 被引量:3
  • 4Yu S Y, Zhang H,Lu M H. Surface acoustic band structures and eigen modes in phononic crystals based on surface acoustic waves. Journal of Nanjing University (Natural Sciences) ,2015,51(6) :1108-1113.
  • 5任悦,刘杰惠,刘晓宙,龚秀芬.基于有限元分析的超声弹性成像仿真研究[J].南京大学学报(自然科学版),2015,51(1):7-13. 被引量:3
  • 6Ren Y,Liu J H,Liu X Z, et al. Simulation of ultrasound elastography based on finite element analysis. Journal of Nanjing University ( Natural Sciences ), 2015, 51(1) :7-13.
  • 7Mei J,Ma G,Yang M,et al. Dark acoustic meta- materials as super absorbers for low-frequency sound. Nature Communications, 2012,3 (2) : 756.
  • 8Ma G, Yang M, Xiao S, et al. Acoustic metasurface with hybrid resonances. Nature Materials, 2014,13 (9) : 873.
  • 9Leroy V, Strybulevych A, Lanoy M, et al. Supera bsorption of acoustic waves with bubble metascreens. Physical Review B, 2015, 9(2) : 1020301.
  • 10Cai X, Guo Q, Hu G, et al. Ultrathin low- frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Applied Physics Letters, 2014, 105(12) :121901.

二级参考文献58

  • 1帅词俊,段吉安,王炯.关于黏弹性材料的广义Maxwell模型[J].力学学报,2006,38(4):565-569. 被引量:29
  • 2Ophir J, C-spedes I, Ponnekanti H, et al. Elastography:A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging, 1991,13 : 111- 134.
  • 3Luo J W, Ying K,Bai J. Elasticity reconstruction for ultrasound elastography using a radial compression: An inverse approach. Ultrasonics. 2006,41 .. el 95 - el 98.
  • 4Mark L,Palmeri A C,Sharma R R,et al. A Finite- element method model of soft tissue response to impulsive acoustic radiation force. IEEE Transac- tions on Ultrmsonic, Ferroelectrics, and Frequency Control,2005,1699- 1712.
  • 5White R M, Voltmer F W. Direct piezoelectric coupling to surface elastic waves. Applied Physics Letters,1965,7(12) :314-316.
  • 6Campbell C. Surface acoustic wave devices for mobile and wireless communications. Orlando, Florida: Academic Press, 1998,631.
  • 7Datta S. Surface acoustic wave devices. New J ersey : Prentice Hall, 1986,208.
  • 8Sigalas M M,Economou E N. Elastic and acoustic wave band structure. Journal of Sound and Vibration, 1992,158(2) : 377 - 382.
  • 9Kushwaha M S, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composi tes. Physical Review Letters,1993,71(13) :2022.
  • 10Lu M H, Feng I., Chen Y F. Phononic crystals and acoustic metamaterials. Materials Today, 2009,12(12) :34-42.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部