期刊文献+

改进的基于梯度投影的Gram观测矩阵优化算法 被引量:5

Improved optimization algorithm of the Gram measurement matrix based on gradient projection
原文传递
导出
摘要 针对压缩感知中观测矩阵优化问题,在分析观测矩阵列向量间的独立性、观测矩阵与稀疏基间的相关性对重构信号质量影响的基础上,采用QR分解增强观测矩阵列向量的独立性,将QR分解与基于梯度投影的Gram观测矩阵优化算法相结合,提出了改进的基于梯度投影的Gram矩阵优化算法.该算法采用等角紧框架逼近Welch界,减小观测矩阵和稀疏基的相关性;采用梯度投影方法求解观测矩阵;再对观测矩阵进行QR分解,增大观测矩阵列向量之间的独立性.仿真实验表明:与基于梯度投影的Gram矩阵优化算法比较,本算法提高了重构信号的质量. To solve the optimization problem of measurement matrix in the compressed sensing,the independence of measurement matrix columns and the coherence between rows of the measurement matrix and columns of sparse basis were analyzed to find out whether they can influence the quality of the reconstruction,so the QRdecomposition was used to enhance the independence of measurement matrix column.By combining the QRdecomposition with the Gram measurement matrix based on gradient projection,an improved algorithm was proposed.The proposed algorithm reduces the correlation between the measurement matrix and sparse matrix by using equiangular tight frame.Secondly,the gradient projection method was used to solve the measurement matrix.Finally,QRdecomposition was used to enhance the independence of measurement matrix column.Simulation results show that the proposed algorithm improves the quality of reconstructed signals compared with the Gram matrix optimization algorithm based on gradient projection.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第8期62-65,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61327005) 国家工程技术研究中心资助项目(2013FU125X02) 广东省短距离无线探测与通信重点实验室资助项目(2014B030301010)
关键词 压缩感知 观测矩阵 QR分解 GRAM矩阵 优化算法 compressed sensing measurement matrix QR decomposition Gram matrix optimization algorithm
  • 相关文献

参考文献10

  • 1Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Candes E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9):589-592.
  • 3Tsaig Y,Donoho D L.Extensions of compressed sensing[J].Signal Processing.2006,86(3):549-571.
  • 4郭继昌,孙骏.基于广义轮换矩阵的伪随机广义二进制轮换矩阵设计[J].数据采集与处理,2014,29(5):677-682. 被引量:1
  • 5程涛,朱国宾,刘玉安.压缩感知中高斯矩阵的优化研究[J].计算机应用研究,2014,31(12):3599-3602. 被引量:5
  • 6Elad M.Optimized projections for compressed sensing[J].IEEE Transactions on Signal Processing,2007,55(12):5695-5702.
  • 7Xu J,Pi Y,Cao Z.Optimized projection matrix for compressive sensing[J].EURASIP Journal on Advances in Signal Processing,2010,2010(1):1-8.
  • 8Abolghasemi V,Ferdoesi S,Sanei S.A gradientbased alternating minimization approach for optimization of the measurement matrix in compressive sensing[J].Signal Processing,2012,92(4):999-1009.
  • 9Yan W,Wang Q,Shen Y.Shrinkage-based alternating projection algorithmfor efficient measurement matrix constructionin compressive sensing[J].IEEE Transations on Instrumentation and Measurement,2014,63(5):1073-1084.
  • 10Szarek S J.Condition numbers of random matrices[J].Journal of Complexity,1991,7(2):131-149.

二级参考文献37

  • 1方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 2Donoho D L.Compressed sensing[J].Information Theory,IEEE Transactions on,2006,52(4):1289-1306.
  • 3CandesE J,Tao T.Decoding by linear programming[J].Information Theory,IEEE Transactions on,2005,51(12):4203-4215.
  • 4Donoho D L,Huo X.Uncertainty principles and ideal atomic decomposition[J].Information Theory,IEEE Transactions on,2001,47(7):2845-2862.
  • 5Baraniuk R G.Compressive sensing[J].Signal Processing Magazine,IEEE,2007,24(4):118-121.
  • 6Calderbank R,Howard S,Jafarpour S.Construction of a large class of deterministic sensing matrices that satisfy a statistical isometryproperty[J].Selected Topics in Signal Processing,IEEE Journal,2010,4(2):358-374.
  • 7Candès E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].Information Theory,IEEE Transactions on,2006,52(2):489-509.
  • 8Tsaig Y,Donoho D L.Extensions of compressed sensing[J].Signal Processing,2006,86 (3):549-571.
  • 9Bajwa W U,Haupt J D,Raz G M,et al.Toeplitzstructured compressed sensing matrices[C]// Statistical Signal Processing,SSP' 07.IEEE/SP 14th Workshop on.Washington DC,USA:IEEE,2007:294-298.
  • 10DeVore R A.Deterministic constructions of compressed sensing matrices[J].Journal of Complexity,2007,23(4):918-925.

共引文献4

同被引文献30

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部