摘要
针对基本布谷鸟搜索(Cuckoo Search,CS)算法在寻优过程中收敛速度慢、寻优结果精度不高的问题,提出一种混合模拟退火(Simulated Annealing,SA)算法的布谷鸟算法(SA-CS).算法采用退火时机的判断准则判断是否陷入局部最优,若陷入则让算法进入模拟退火机制,以一定的概率得到一个更差的解,使得算法跳出局部最优,增强算法寻找最优解的能力.通过对经典测试函数和旅行商问题进行测试,结果表明,改进后的SA-CS算法提高了基本CS算法的收敛速度以及寻优精度,对于函数优化问题和组合优化问题都具有一定的优势.
The Cuckoo Search ( CS ) optimization algorithm in search procedure is of slow convergence and low accuracy. To improve convergence speed and optimal accuracy, a cuckoo search algorithm with simulated annealing( SA-CS ) is proposed. Simulated annea- ling mechanism is introduced to gain a worse solution at a certain probability to ensure the algorithm run beyond the local optimum and enhance the algorithm's ability to find the optimal solution if the solution falls into local optima/value by using the rules of annea- ling timing. Through testing the benchmark functions and the standard traveling salesman problems, the results show that SA-CS pro- vides a better optimization precision and convergence rate for the function optimization problems and the combinatorial optimization problems.
出处
《小型微型计算机系统》
CSCD
北大核心
2016年第9期2029-2034,共6页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(71271078)资助
国家科技重大专项子项(2013ZX0412-051)资助
长沙市科技计划项目(k1307024-31)资助
湖南大学"中央高校基本科研业务费"项目资助
湖南省2015"工程科学分析与优化研究生培养创新基地"项目资助
关键词
布谷鸟搜索算法
模拟退火算法
收敛速度
寻优精度
cuckoo search algorithm
simulated annealing algorithm
convergence rate
optimization accuracy