期刊文献+

IaaS云环境下一种能耗和资源损耗优化的虚拟机放置策略 被引量:2

An Energy-Efficient and Resource Utility Optimization Strategy for Virtual Machine Placement in IaaS Cloud
下载PDF
导出
摘要 为了降低IaaS云中物理服务器的资源开销和能耗,提出了一种资源损耗模型;同时结合服务器能耗模型,提出了一种能耗和资源损耗优化的虚拟机放置策略;设计并实现了一种能耗有效且物理资源损耗优化的多目标虚拟机放置算法。仿真实验结果表明,该算法不仅能有效地降低物理服务器的能源消耗,同时能较好地控制物理资源损耗,从而实现节能减排,具有较强的理论和现实意义。 In order to reduce the power consumption and server physical resources astage in IaaS,a resource wastage model is established.By incorporating energy consumption model of servers,a virtual machine placement strategy is proposed for optimizing the consumption of resource and energy.Moreover,this paper designs and implements a multi-objective virtual machine placement algorithm to achieve the energy efficiency and optimization of physical resource.Finally,it is shown from simulation results that the proposed algorithm not only effectively reduces the energy consumption of server cluster but also improves the utilization ratio of server physical resource simultaneously.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期563-571,共9页 Journal of East China University of Science and Technology
基金 国家自然科学基金面上项目(61472139)
关键词 云计算 虚拟机放置 能源消耗 资源损耗 多目标优化 cloud computing virtual machine placement energy consumption resource wastage multi-objective optimization
  • 相关文献

参考文献9

二级参考文献191

  • 1刘志飘,王尚广,孙其博,杨放春.一种能量感知的虚拟机放置智能优化算法[J].华中科技大学学报(自然科学版),2012,40(S1):398-402. 被引量:5
  • 2Armbrust M, Fox A, Griffith R et al. A view of cloud computing. Communications of the ACM, 2010, 53(4): 50 58.
  • 3Patterson D, Brown A, BroadweIl P et al. Recovery oriented computing (ROC).. Motivation, definition, techniques, and case studies. Berkeley: UC Berkeley, Technical Report: UCB/CSD-02-1175 , 2002.
  • 4Clark C, Fraser K, Hand Set al. Live migration of virtual machines//Proceedings of the 2nd USENIX Symposium on Networked Systems Design and Implementation (NSDI'05). Boston, 2005: 273-286.
  • 5Zhu X, Young D, Watson B.J, Wang Z et al. 1000 lslands: An integrated approach to resource management forvirtualized data centers. Cluster Computing, 2008, 12(1): 45-57.
  • 6Li Bo, Li Jian Xin, Huai Jin-Peng et al. EnaCloud: An energy saving application live placement approach for cloud computing environments//Proceedings of the International Conference on Cloud Computing. Bangalore, 2009:17-24.
  • 7Ajiro Y, Tanaka A. Improving packing algorithms for server consolidation//Proceedings of the 33rd International Computer Measurement Group Conference. San Diego, 2007:399-406.
  • 8Gupta R, Bose S. K, Sundarrajan Set al. A two stage heuristic algorithm for solving server consolidation problem with item-item and bin-item incompatibility constraints//Proceedings of the 2008 IEEE International Conference on Services Computing (SCC'08). Hawaii, 2008:39-46.
  • 9Agrawal S, Bose S K, Sundarrajan S. Grouping genetic algorithm for solving the server consolidation with conflicts// Proceedings of the 1st ACM/SIGEVO Summit Genetic and Evolutionary Computation. New York, 2009:1-8.
  • 10Wood T, Sbenoy P J, Venkataramani A. Black-box and gray-box strategies for virtual machine migration//Proceedings of the 4th USENIX Symposium on Networked Systems Design and Implementation (NSDI' 07). Cambridge, MA, 2007 : 229-242.

共引文献311

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部