期刊文献+

硫醇修饰的磁性银花纳米粒子SERS基底在氯霉素检测中的应用 被引量:4

Alkanethiol modified magnetic silver flower nanoparticles applied to detection of chloramphenicol
原文传递
导出
摘要 目的制备一种新型的硫醇修饰的磁性银花纳米粒子SERS基底对氯霉素(CAP)进行拉曼检测,确定SERS基底的增强效果。方法选择烷基硫醇作为基底的表面修饰剂,自组装到磁性银花纳米粒子的银壳表面,通过疏水作用,将CAP分子富集到基底表面,从而实现检测CAP分子拉曼信号的增强。结果 3种不同硫醇修饰的基底对CAP的增强顺序是正己硫醇>十二硫醇>十八硫醇。利用Fe_3O_4@SiO_2-Ag-C6 SERS基底对浓度范围10^(-3)~10^(-10)mol/L的CAP溶液和10^(-3)~10^(-9)mol/L的牛奶中CAP进行拉曼检测,检测限分别为0.1 nmol/L(32 ppt)和1 nmol/L(323 ppt)。结论硫醇修饰的磁性银花纳米粒子是一种高活性的SERS基底,可用于低浓度物质的检测分析。 Objective To prepare novel alkanethiol modified magnetic silver flower nanoparticles as SERS substrate to chloramphenicol for Raman detection and to determine their enhancement effect. Methods An alkanethiol was chosen as a surface modifier of the substrate and was self-assembled onto the magnetic silver flower nanoparticle surface. The chloramphenicol molecules were enriched to the surface of the substrate by hydrophobic interaction and the effect for detection of chloramphenicol SERS signal was enhanced. Results It was found that the 1-hexanethiol-modified SERS substrate was able to lead to stronger enhancement than 1-dodecanethiol and octadecanethiol. Fe3O4@SiO2-Ag-C6 was used to detect the chloramphenicol( 10 -3- 10 -10 mol / L) and chloramphenicol in milk( 10 -3- 10 -9mol / L) by surface-enhanced Raman spectroscopy. The detection limits were 0. 1 nmol / L( 32 ppt) and 1 nmol / L( 323 ppt) respectively. Conclusion Alkanethiol modified magnetic silver flower nanoparticles are a highly active SERS substrate,which can be used for detection of low concentrations of analytical substances.
出处 《军事医学》 CAS CSCD 北大核心 2016年第8期634-638,共5页 Military Medical Sciences
基金 国家重大科学仪器设备开发专项资助项目(2012YQI80117)
关键词 光谱分析 拉曼 硫醇 磁性 纳米粒子 氯霉素 spectrum analysis Raman alkanethiol magnetic nanoparticles chloramphenicol
  • 相关文献

参考文献16

  • 1陈眷华,彭羽.氯霉素类抗生素药物对人类健康的威胁[J].贵州畜牧兽医,2006,30(4):17-18. 被引量:15
  • 2Wiest DB, Cochran JB, Tecklenburg FW. Chloramphenicol toxic- ity revisited: a 12-year-old patient with a brain abscess [ J]. J Pediatr Pharmacol Ther, 2012, 17(2) : 182 -188.
  • 3Pengov A, Flajs VC, Zadnik T, et al. Distribution of chloram- phenicol residues in lactating cows following an external applica- tion[ J]. Anal Chim Acta, 2005, 529 : 347 - 351.
  • 4Tajik H, Malekinejad H, Razavi-Rouhani SM, et al. Chloram- phenicol residues in chicken liver, kidney and muscle: a compar- ison among the antibacterial residues monitoring methods of Four Plate Test, ELISA and HPLC [ J]. Food Chem Toxicol, 2010,48 ( 8 - 9 ) :2464 - 2468.
  • 5Commission Decision of 13 March 2003 Amending Decision 2002/657/EC as regard the setting of minimum required perform- ance limits (MRPLs) for certain residues in food of animal origin IS]. EC,2003-181.
  • 6Wu JB, Chen LY, Mao PP, et al. Determination of chloramphen- icol in aquatic products by graphene-based SPE coupled with HPLC-MS/MS[J]. J Sep Sci, 2012, 35(24) :3586 -3592.
  • 7Yan WJ, Yang LP, Zhuang H,et al. Engineered "hot" core-shell nanostrnctures for patterned detection of chloramphenicol [ J ]. Bi- osens Bioelectron, 2016,78:62 -72.
  • 8Ji W, Yao WR. Rapid surface enhanced Raman scattering detec- tion method for chloramphenicol residues [ J ]. Spectrochim Acta A Mol Biomol Spectrosc, 2015,144 : 125 - 130.
  • 9Jiang XH, Lai YC, Yang M, et M. Silver nanoparticle aggregates on copper foil for reliable quantitative SERS analysis of polycyclic aromatic hydrocarbons with a portable Raman spectrometer [ J ]. Analyst, 2012,137 ( 17 ) :3995 - 4000.
  • 10Shervedani RK, Mozaffari SA. Copper ( I ) nanosensor based on a gold cysteamine self-assembled monolayer functionalized with salicylaldehyde [ J ]. Anal Chem,2006,78 (14) :4957 - 4963.

二级参考文献41

共引文献56

同被引文献51

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部