期刊文献+

同轴静电纺丝制备低温相变纤维及其性能研究 被引量:4

Preparation and performance of nanofiber with low phase change temperature via coaxial electrospinning
原文传递
导出
摘要 选用聚乙烯醇缩丁醛(PVB)为纤维壳材,相变材料正十五烷(PCM)为芯材,利用同轴静电纺丝法成功制备了一系列不同包封率的低温相变纤维。通过扫描电镜、透射电镜、差式扫描量热仪、热重分析仪和红外热成像仪等手段对低温相变纤维进行表征。结果表明:相变纤维的熔融焓、结晶焓、正十五烷的包封率随着内相流速的增加而增加。当内相流速为500μL/h时,相变纤维的包封率达到最大值33.8%,其熔融焓和结晶焓分别为69.84和69.49J/g。该低温相变纤维具有良好的且可重复的隔热效果和调温性能,其热调节温度在10℃附近。研究结果为采用熔融同轴静电纺丝法制备新型的低温相变纤维材料提供了重要指导。 A series of nanofibers with different encapsulation ratios were successfully fabricated via melt coaxial e[ectrospinning,where polyvinyl butyra[ (PVB) was used as shell and n-pentadeeane (PCM) with low phase change tem- perature was used as core. These fibers were characterized by scanning electron microscopy, transmission electron microsco- py,differential scanning calorimetry, thermogravimetric analyzer and infrared thermography etc. The melting enthalpy, the crystallization enthalpy and the encapsulation ratio of PCM in PCM/PVB fibers increased with increasing of the inner flow rate. When the inner flow rare was equal to 500~L/h,the encapsulation ratio of PCM/PVB fibers reached to the maximum 33.8 %, and the corresponding melting enthalpy and the crystallization enthalpy were 69.84J/g and 69.49J/g, respectively. PCM/PVB nanofibers exhibited satisfactory and repeatable heat insulating and thermo-regulating capability with thermo- regulating temperature around IO^C. The results provided a valuable guidance for preparing novel fibers with low phase change temperature via melt coaxial electrospinning.
出处 《化工新型材料》 CAS CSCD 北大核心 2016年第8期59-61,65,共4页 New Chemical Materials
基金 国家自然科学基金项目(21136006) 教育部"新世纪优秀人才支持计划"(NCET-11-0352)
关键词 相变纤维 正十五烷 聚乙烯醇缩丁醛 同轴静电纺丝 调温性能 phase change fiber, n-pentadecane, polyvinyl butyral, coaxial electrospinning, thermo-regulating capability
  • 相关文献

参考文献3

二级参考文献42

  • 1Dale J D, Ackerman M Y. A comparison of radiant floor and forced air heating. Proceeding of 15th Annual SESCI Conference, 1989.15-18.
  • 2Anthienitis A K, Chen T Y. Experimental and theoretical investigation of floor heating with thermal storage. ASHRAE Trans, 1993, 99(1): 1049.
  • 3Lafontaine L H. Radiant heating and cooling. Heating, Piping & Air Conditioning, 1990, 62(3): 71.
  • 4Bakos G. Energy management method for auxiliary energy saving in a passive-solar-heated residence using low-cost off-peak electricity. Energy and Buildings, 2000, 31(3): 237.
  • 5Farid M, Kong W J. Underfloor heating with latent heat storage. Proceeding of the Institution of Mechanical Engineers, 2001. 601-609.
  • 6Hawes D W, Feldman D. Absorption of phase change materials in concrete. Solar Energy Materials and Solar Cells, 1992, 27(2): 91.
  • 7Hawes D W, Banu D, Feldman D. Stability of phase change materials in concrete. Solar Energy Materials and Solar Cells, 1992, 27(2): 103.
  • 8Anthienitis A K, et al. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Building and Environment, 1997, 32(5): 405.
  • 9Sherman M H. Tracer-gas techniques for measuring ventilation in a single zone. Building and Environment, 1990, 25(4): 365.
  • 10Benson K,et al.Sol Energy Mater,1986.13:133-152.

共引文献59

同被引文献33

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部