摘要
履带车辆转向阻力随行驶状态呈现非线性、大范围变化的现象,且由于车辆惯性大、电机驱动能力有限,易进入深度饱和状态,而双侧电机动力相互独立,要实现车辆全速度范围的稳定转向必须对两侧力矩进行有效控制。针对以上问题,设计了一种横摆角速度控制律。开展转向动力学分析,提出速度、横摆角速度转向控制结构;设计了一种带等效控制项的条件积分滑模控制算法,通过引入等效控制项,提高系统响应速度,减小滑模抖振;通过引入条件积分控制项,使滑模控制项边界层外与经典滑模性能一致,鲁棒性强,边界层内平滑切换为Anti-Windup结构的PI控制,便于消除误差,抑制积分饱和。Matlab与Recur Dyn联合仿真表明,提出的算法具备跟踪能力强、抗扰动和饱和、输出控制量平滑的优点,能够实现车辆稳定转向控制。
The steer resistance of tracked vehicle has character of nonlinear and wide range change,and the drive system is very likely to be saturated dual to large vehicle inertia and constrained drive torque,while the drive motors of dual-motor tracked vehicle are independent with each other,which leads to regulate the drive torque per side to realize stable steer. In order to improve the stability of steer,the sliding mode technique with conditional integrator is applied to yaw rate control. A velocity-yaw rate steer control structure is developed through dynamics analysis. The equivalent conditional integral sliding mode control( ECISMC) algorithm is designed,which could increase the response speed through equivalent term feedforward compensation and adopt the robust and rapid discontinuous nature of the sliding control outside boundary layer,enabling smooth transition to a PI control law with anti-windup inside boundary layer to eliminate track error by the conditional integrator approach. Co-simulation of Matlab and Recur Dyn shows that the control algorithm has advantages of high precision,robust to disturbance,anti-windup andsmooth control input,which could realize stable steer performance.
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2016年第8期1351-1358,共8页
Acta Armamentarii
基金
军队院校科技创新项目(12050005)
关键词
兵器科学与技术
履带车辆
电传动
转向控制
滑模控制
ordnance science and technology
tracked vehicle
electric drive
steer control
sliding mode control