期刊文献+

基于特征融合进行活动识别的DCNN方法 被引量:2

A DCNN method for human activity recognition based on feature fusion
下载PDF
导出
摘要 研究了输入是可穿戴传感器获得的多通道时间序列信号,输出是预定义的活动的活动识别模型,指出活动中的有效特征的提取目前多依赖于手工和浅层特征学习结构,不仅复杂而且会导致识别准确率下降;基于深度学习的卷积神经网络(CNN)不是对时间序列信号进行手工特征提取,而是自动学习最优特征;目前使用卷积神经网络处理有限标签数据仍存在过拟合问题。因此提出了一种基于融合特征的系统性的特征学习方法用于活动识别,用Image Net16对原始数据集进行预训练,将得到的数据与原始数据进行融合,并将融合数据和对应的标签送入有监督的深度卷积神经网络(DCNN)中,训练新的系统。在该系统中,特征学习和分类是相互加强的,它不仅能处理端到端的有限数据问题,也能使学习到的特征有更强的辨别力。与其他方法相比,该方法整体精度从87.0%提高到87.4%。 An activity recognition model, with its input being the multi-channel time series signals obtained by wearable sensors and output being a predefined activity, was studied. It was pointed that extracting effective features from ac- tivity is a key in activity recognition. Most of the existing work relies on manual extraction of the features and the shallow learning structure, which makes the work complex and the recognition unaccurate. However, the convolu- tional neural network (CNN) based on deep learning does not manually extract the time series signals, but auto- matically learns the best feature. At present, using convolutional neural network to process limited labeled data still has the overfitting problem. Therefore, a systematic feature learning method based on fusion characteristics was presented for activity recognition. The method uses the ImageNetl6 to pre-train the original data set to fuse the ob- tained data with the original data, and puts the fused data and the corresponding tag into a supervised depth convo- lutional neural network (DCNN) to train the new system. In this system, the characteristics of learning and classi- fication are mutually reinforcing, which can not only deal with the problem of limited data from end to end, but also make the learning more discriminative. Compared with other methods, the overall accuracy of the proposed method is increased from 87% to 87.4%.
出处 《高技术通讯》 CAS CSCD 北大核心 2016年第4期374-380,共7页 Chinese High Technology Letters
基金 国家自然科学基金(61273019 61473339) 河北省自然科学基金(F2013203368) 河北省青年拨尖人才支持项目([2013]17) 河北省博士后专项资助(B2014010005) 中国博士后科学基金(2014M561202)资助项目
关键词 融合特征 多通道时间序列 深度卷积神经网络(DCNN) 活动识别 fusion feature, multichannel time sequence, deep convolutional neural network (DCNN), activi- ty recognition
  • 相关文献

参考文献15

  • 1Alsheikh M A, Selim A, Niyato D, et al. Deep activity recognition models with triaxial accelerometers. Computer Science, 2015, arxiv: 1511.04664.
  • 2Roggen D, Cuspinera L P, Pombo G, et al. Limited- memory warping LCSS for real-time low-power pattern rec- ognition in wireless nodes. In: Proceedings of the 12th European Conference Wireless Sensor Networks (EWSN), Porto, Portugal, 2015. 151-167.
  • 3Ordonez F J, Englebienne G, De Toledo P, et al. In- home activity recognition: Bayesian inference for hidden Markov models. IEEE Pervasive Computing, 2014, 13 (3) :67-75.
  • 4Cao H, Nguyen M N, Phua C, et al. An integrated framework for human activity classification. Ubicomp,2012:331-340.
  • 5Bulling A, Blauke U, Schiele B. A tutorial on human ac- tivity recognition using body-worn inertial sensors. Acre Computing Surveys, 2014, 46 ( 3 ) :57-76.
  • 6P18tz T, Hammerla N Y, Olivier P. Feature learning for activity recognition in ubiquitous computing. In: Proceed- ings of the International Joint Conference on Artificial In- telligence, Barcelona, Spain, 2011. 1729-1734.
  • 7Yang J B, Nguyen M N, San P P, et al. Deep convolu- tional neural networks on multichannel time series for hu- man activity recognition. In: Proceedings of the 24th In- ternational Joint Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015. 3995-4001.
  • 8吴渊,史殿习,杨若松,李寒,陈茜,周荣.手机位置和朝向无关的活动识别技术研究[J].计算机技术与发展,2016,26(4):1-5. 被引量:2
  • 9刘斌,刘宏建,金笑天,国德峰.基于智能手机传感器的人体活动识别[J].计算机工程与应用,2016,52(4):188-193. 被引量:14
  • 10Marmanis D, Datcu M, Esch T, et al. Deep learning earth observation classification using imageNet pretrained networks. IEEE Geoscience & Remote Sensing Letters, 2016, 13(1) :105-109.

二级参考文献35

  • 1Ouchi K,Doi M.Indoor-outdoor activity recognition by a smartphone[C]//Proceedings of the 2012 ACM Conference on Ubiquitous Computing,2012:600-601.
  • 2Kern N,Schiele B,Schmidt A.Multi-sensor activity context detection for wearable computing[C]//Ambient Intelligence.[S.l.]:Springer,2003:220-232.
  • 3Lester J,Choudhury T,Kern N,et al.A hybrid discriminative/generative approach for modeling human activities[C]//IJCAI,2005:766-772.
  • 4Maurer U,Rowe A,Smailagic A,et al.Location and activity recognition using e Watch:A wearable sensor platform[M]//Ambient Intelligence in Everyday Life.[S.l.]:Springer,2006:86-102.
  • 5Qian H,Mao Y,Xiang W,et al.Recognition of human activities using SVM multi-class classifier[J].Pattern Recognition Letters,2010,31:100-111.
  • 6Preece S J,Goulermas J Y,Kenney L P,et al.Activity identification using body-mounted sensors-a review of classification techniques[J].Physiological Measurement,2009,30.
  • 7Khan A M,Lee Y K,Kim T S.Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets[C]//Engineering in Medicine and Biology Society,30th Annual International Conference of the IEEE,2008:5172-5175.
  • 8Gu T,Chen S,Tao X,et al.An unsupervised approach to activity recognition and segmentation based on object-use fingerprints[J].Data&Knowledge Engineering,2010,69:533-544.
  • 9Guan D,Yuan W,Lee Y K,et al.Activity recognition based on semi-supervised learning[C]//13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications,2007:469-475.
  • 10Stikic M,Larlus D,Schiele B.Multi-graph based semisupervised learning for activity recognition[C]//International Symposium on Wearable Computers,2009:85-92.

共引文献13

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部