期刊文献+

嵌入遗传算子的改进灰狼优化算法 被引量:22

Improved grey wolf optimization algorithm embedded with genetic operators
下载PDF
导出
摘要 针对基本灰狼优化算法(GWO)存在求解精度低、后期收敛速度慢和易陷入局部最优的问题,提出一种基于遗传算子的改进灰狼优化(IGWO)算法用于求解无约束优化问题.该算法首先利用佳点集理论初始化种群,为算法全局搜索多样性奠定基础;然后在决策层以外的群体中随机选取三个个体与决策层个体执行算术交叉操作,引导群体向决策层区域移动以增强算法局部搜索能力和加快算法收敛速度;最后,对决策层个体进行多样性变异操作以避免算法陷入局部最优.采用几个标准测试函数进行仿真实验:当维数较高(D=30或D=50)时,IGWO算法的总体性能上均优于基本GWO算法.实验结果表明IGWO算法在收敛速度和求解精度指标上明显优于对比算法. Aimed at the problem in standard grey wolf optimization (GWO) algorithm such as low solu- tion precision, slow later-term convergence, and high possibility of being trapped in local optimum, an improved GWO (IGWO) algorithm was proposed based on genetic operators for solving unconstrained optimization problems. In proposed IGWO algorithm, good point set theory was used to initiate population, which would enhance the diversity of global searching. Then three individuals were randomly selected from the population out of policy-making layer to lead the population move into the region of policy-making layer, so that the global searching ability and convergence were improved. Finally, the diversity mutation op- eration of individuals in policy-making layer was carried out to help them jump out from local optima. It was shown by simulation experiments on several benchmark functions that the proposed algorithm's overall performance would be superior to standard GWO algorithm when the dimension of functions was higher (D = 30 or D=50). The convergence speed and solution precision with IGWO would remarkably be superior contrasted algorithms.
作者 徐松金 龙文
出处 《兰州理工大学学报》 CAS 北大核心 2016年第4期102-108,共7页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(61463009) 贵州省科学技术厅 铜仁市科学技术局与铜仁学院联合基金(黔科合LH字[2015]7249号 黔科合LH字[2014]7490号)
关键词 灰狼优化算法 交叉 变异 群智能 grey wolf optimization algorithm crossover mutation swarm intelligence
  • 相关文献

参考文献19

  • 1龙文.自适应调整子种群个体数目的遗传算法及其应用[J].兰州理工大学学报,2013,39(4):80-84. 被引量:4
  • 2QU B, SUGANTHAN P N,DAS S. A distance-based locallyinformed particle swarm model for multimodal optimization[J]. IEEE Transactions on Evolutionary Computation, 2013,17(3):387-402.
  • 3LONG W, LIANG X M, HUANG Y F, et al. A hybrid differ-ential evolution augmented Lagrangian method for constrainednumerical and engineering optimization [J], Computer-AidedDesign, 2013,45(12) : 1562-1574.
  • 4YAZDANI S, NEZAMABADI-POUR H, KAMYAB S. Agravitational search algorithm for multimodal optimization[J], Swarm and Evolutionary Computation,2014,14(1): 1-14.
  • 5王伟,龙文.基于交叉算子的改进人工蜂群算法[J].兰州理工大学学报,2015,41(1):101-106. 被引量:17
  • 6罗佳,唐斌.新型灰狼优化算法在函数优化中的应用[J].兰州理工大学学报,2016,42(3):96-101. 被引量:25
  • 7MIRJALILI S,MIRJALILI S M,LEWIS A. Grey wolf optimi-zation [J]. Advances in Engineering Software,2014,69(7) :46-61.
  • 8MAD ADI A, MOTLAGH M M. Optimal control of DC motorusing grey wolf optimizer algorithm [J], Technical Journal ofEngineering and Applied Science,2014,4(4) :373-379.
  • 9EMARY E,ZAWBAA H M,GROSAN C,etaL Feature subsetselection approach by gray-wolf optimization [C]//Proceed-ings of the International Afro-European Conference on Indus-trial Advancement. Berlin:Springer,2014:1-13.
  • 10MIRJALILI S, How effective is the grey wolf optimizer intraining multilayer perceptions [J]. Applied Intelligence,2015,42(4):608-619.

二级参考文献45

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:202
  • 2李未,黄文奇.一种求解合取范式可满足性问题的数学物理方法[J].中国科学(A辑),1994,24(11):1208-1217. 被引量:21
  • 3高亮,王晓娟,魏巍,陈亚洲.一种改进的类电磁机制算法[J].华中科技大学学报(自然科学版),2006,34(11):4-6. 被引量:18
  • 4Birbil S T, Fang S C. An Electromagnetism-like Mechanism for Global Optimization[ J]. Journal of Global Optimization, 2003, 25(3): 263-282.
  • 5Wang Yuping, Dang Chuangyin. An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares[ J]. IEEE Trans on Evolutionary Computation, 2007, 11(5): 579-595.
  • 6Leung Y W, Wang Yuping. An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization[ J]. IEEE Trans on Evolutionary Computation, 2001, 5(1): 41-53.
  • 7Zhao Chunying,Proc PAICMA 2000,2000年,256页
  • 8Zhang Hui,Proc IWCSE'97,1997年,267页
  • 9陈国良,遗传算法及其应用,1996年
  • 10李未,中国科学.A,1994年,24卷,11期,1208页

共引文献225

同被引文献192

引证文献22

二级引证文献238

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部