期刊文献+

基于多种群的改进粒子群算法多模态优化 被引量:12

Enhanced multi-species-based particle swarm optimization for multi-modal function
下载PDF
导出
摘要 针对多模态函数寻优过程中开发与探索能力难以平衡的问题,提出一种基于多种群的改进粒子群算法(EMSPSO)。该算法在基于种群的粒子群算法(SPSO)的基础上改进了种群生成策略,通过在个体最优值中选择种子,将粒子群分为若干独立进化的种群,增强了算法收敛的稳定性;为了提高粒子的利用率、算法的全局搜索能力和搜索效率,引入冗余粒子重新初始化策略;同时为了防止算法在寻优的过程中遗漏适应度较优的极值点,对速度更新公式进行改进,使算法的开发与探索能力得到了有效的均衡。最后选用6个典型的测试函数进行对比实验,实验结果表明,EMSPSO具有较高的多模态寻优成功率与较优的全局极值搜索性能。 It is difficult to balance local development and global exploration in a multi-modal function optimization process, therefore, an Enhanced Multi-Species-based Particle Swarm Optimization (EMSPSO) was proposed. An improved multi-species evolution strategy was introduced to Species-based Particle Swarm Optimization (SPSO). Several species which evolved independently were established by selecting seed in the individual optimal values to improve the stability of algorithm convergence. A redundant particle reinitialization strategy was introduced to the algorithm in order to improve the utilization of the particles, and enhance global search capability and search efficiency of the algorithm. Meanwhile, in order to prevent missing optimal extreme points in the optimization process, the rate update formula was also improved to effectively balance the local development and global exploration capability of the algorithm. Finally, six typical test functions were selected to test the performance of EMSPSO. The experimental resuhs show that, EMSPSO has high muhi-modal optimization success rate and optimal performance of global extremum search.
出处 《计算机应用》 CSCD 北大核心 2016年第9期2516-2520,共5页 journal of Computer Applications
基金 江苏省自然科学基金资助项目(BK2013 0205)~~
关键词 多模态函数优化 粒子群算法 小生境技术 多种群 冗余粒子 multi-modal function optimization Particle Swarm Optimization (PSO) algorithm niche technology multi-species redundant particle
  • 相关文献

参考文献14

  • 1刘宇,吕明伟,李维佳,李文涛.基于物种的自适应多模态粒子群优化算法[J].山东大学学报(理学版),2011,46(5):91-96. 被引量:4
  • 2KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 1995, 4: 1942-1948.
  • 3HORN J. The nature of niching: genetic algorithm and the evolution of optimal, cooperative population [D]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 1997: 17-21.
  • 4WEI L, ZHAO M. A niche hybrid genetic algorithm for global optimization of continuous multimodal functions [J]. Applied Mathematics and Computation, 2005, 160(3): 649-661.
  • 5LI J P, BALAZS M E, PARKS G T, et al. A species conserving genetic algorithm for multimodal function optimization [J]. Evolutionary Computation, 2002, 10(3): 207-234.
  • 6陈娟,徐立鸿.动态小生境遗传算法在多模函数优化中的应用[J].同济大学学报(自然科学版),2006,34(5):684-688. 被引量:7
  • 7LI X. Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization [M]// DEB K. Genetic and Evolutionary Computation—GECCO 2004, LNCS 3102. Berlin: Springer, 2004:105-116.
  • 8PASSARO A, STARITA A. Particle swarm optimization for multimodal function: a clustering approach [J]. Journal of Artificial Evolution and Application, 2008, 2008(2):Article No. 8.
  • 9SEO J H, IM C H, HEO C G, et al. Multimodal function optimization based on particle swarm optimization [J]. IEEE Transactions on Magnetics, 2006, 42(4): 1095-1098.
  • 10CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.

二级参考文献30

  • 1王欣欣,李金保.关于由邻接矩阵求可达性矩阵的方法[J].吉林化工学院学报,2005,22(4):89-91. 被引量:22
  • 2BRITS R, ENGELBRECHT A P, Van DEN BERGH F. Locating multiple optima using particle swarm optimization [ J ]. Applied Mathematics and Computation, 2007,189 : 1859-1883.
  • 3BRITS R, ENGELBRECHT A P, Van DEN BERGH F. A niching particle swarm optimizer [ C ]//Proc of the 4th Asia Pacific Conference on Simulated Evolution and Learning. 2002:692-696.
  • 4BEASLEY D, BULL D, MARTIN R. A sequential niche technique for multimodal functiori optimization [ J ]. Evolutionary Computation, 1993,1 (2) :101-125.
  • 5KENNEDY J, EBERHART R C. Particle swarm optimization[ C]// Pmc of IEEE International Conference on Neural Networks. Perth: [ s. n. ] , 1995 : 1942-1948.
  • 6CLERC M. The swarm and the queen: towards a deterministic and adaptive particle Swarm optimization [ C ]//Proc of Congress on Evolutionary Computation. Piscataway : IEEE Service Center, 1999 : 1951- 1957.
  • 7CARLISLE A, DOZIER G. An off-the-shelf PSO[ C]//Proc of Workshop on Particle Swarm Optimization. Indianapolis: [ s. n. ] , 2001:1-6.
  • 8Van DEN BERGH F. An analysis of particle swarm optimizers[ D]. South Africa : Department of Computer Science, University of Pretoria, 2002.
  • 9LAGARIAS J C, REEDS J A, WRIGHT M H, et al. Con~,ergence properties of the nelder-mead simplex method in low dimensions[ J ]. SIAM Journal of Optimization, 1998,9( 1 ) :112-147.
  • 10OZCAN E, YILMAZ M. Particle swarms for multimodal optimization [C]//BELICZYNSKI B, et al., Lecture Notes in Computer Science. [ S. 1. ] : Springer-Verlag,2007:366-375.

共引文献9

同被引文献84

引证文献12

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部