期刊文献+

基于信息熵和时效性的协同过滤推荐 被引量:13

Collaborative filtering recommendation based on entropy and timeliness
下载PDF
导出
摘要 针对协同过滤推荐算法存在的噪声数据问题,提出了用户信息熵模型。用户信息熵模型结合信息论中信息熵的概念,采用信息熵的大小衡量用户信息的含量,利用用户评分数据得到用户的信息熵,过滤信息熵低的用户,从而达到过滤噪声数据的目的。同时,将用户信息熵模型和项目时效性模型相结合,项目时效性模型利用评分数据上下文信息获得项目的时效性,能有效缓解协同过滤的数据稀疏性问题。实验结果表明提出的算法能有效过滤噪声数据,提高推荐精度,与基础算法相比,推荐精度提高了1.1%左右。 Aiming at the noise data problem in collaborative filtering recommendation, a user entropy model was put forward. The user entropy model combined the concept of entropy in the information theory and used the information entropy to measure the content of user information, which filtered the noise data by calculating the entropy of users and getting rid of the users with low entropy. Meanwhile, combining the user entropy model with the item timeliness model, the item timeliness model got the timeliness of item by using the contextual information of the rating data, which alleviated the data sparsity problem in collaborative filtering algorithm. The experimental results show that the proposed algorithm can effectively filter out noise data and improve the recommendation accuracy, its recommendation precision is increased by about 1.1% compared with the basic algorithm.
出处 《计算机应用》 CSCD 北大核心 2016年第9期2531-2534,共4页 journal of Computer Applications
关键词 推荐系统 协同过滤 噪声数据 数据稀疏性 信息熵 时效性 recommender system collaborative filtering noise data data sparsity information entropy timeliness
  • 相关文献

参考文献11

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:544
  • 2RESNICK P, VARIAN H R. Recommender system [J]. Communications of the ACM, 1997, 40(3): 56-58.
  • 3CHU W, PARK S T. Personalized recommendation on dynamic con-tents using predictive bilinear models [C]// WWW 2009: Proceedings of the 2009 18th International Conference on World Wide Web. New York: ACM, 2009: 691-700.
  • 4孟祥武,刘树栋,张玉洁,胡勋.社会化推荐系统研究[J].软件学报,2015,26(6):1356-1372. 被引量:141
  • 5WANG G, XIE S, LIU B, et al. Review graph based online store review spammer detection [C]// ICDM 2011: Proceedings of the 2011 International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2011: 1242-1247.
  • 6SONG J, LEE S, KIM J. Spam filtering in twitter using sender-receiver relationship [C]// RAID '11: Proceedings of the 2011 14th International Conference on Recent Advances in Intrusion Detection. Berlin: Springer, 2011: 301-317.
  • 7CHIRITA P A, NEJDL W, ZAMFIR C. Preventing shilling attacks in online recommender systems [C]// WIDM '05: Proceedings of the 2005 7th Annual ACM International Workshop on Web Information and Data Management. New York: ACM, 2005: 67-74.
  • 8BILGE A, ?ZDEMIR Z, POLAT H. A novel shilling attack detection method [J]. Procedia Computer Science, 2014, 31: 165-174.
  • 9CAO J, WU Z, MAO B, et al. Shilling attack detection utilizing semi-supervised learning method for collaborative recommender system [J]. World Wide Web, 2013, 16(5/6): 729-748.
  • 10刘江冬,梁刚,杨进.基于时效性的冷启动解决算法[J].现代计算机(中旬刊),2016(2):3-6. 被引量:3

二级参考文献175

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献673

同被引文献112

引证文献13

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部