期刊文献+

胫骨后倾角对前交叉韧带及膝关节稳定性影响的三维有限元分析 被引量:8

The Influence of Posterior Tibial Slope on the Anterior Cruciate Ligament and Knee Joint Stability
原文传递
导出
摘要 目的:探讨胫骨平台后倾角对前交叉韧带及膝关节稳定性的生物力学影响。方法:选择一名健康志愿者行左侧膝关节CT及MRI扫描,测量胫骨平台后倾角为7°。将扫描数据导入Mimics软件,获得骨、软骨、半月板、韧带等结构的三维模型,然后利用Geomagic对图像进行修饰,再导入Solidworks软件中建立伸直位膝关节三维模型。利用Solidworks软件建立2°和12°两种不同后倾角的膝关节三维模型。在建立三组膝关节伸直位模型后,每组模型再分别建立屈膝30°和90°的模型。将膝关节不同三维有限元模型导入ANSYS有限元分析软件中,给予加载负荷进行计算分析:伸直位模型胫骨固定,股骨侧给予施加1150 N的垂直负荷;屈膝30°模型胫骨固定,股骨施加750 N垂直负荷及10 N·m的外旋负荷;屈膝90度模型股骨侧固定,胫骨侧施加134 N的前向负荷。在各模型中分析ACL及胫骨-股骨的相对位移。结果:计算机三维有限元分析显示,在伸膝状态下,ACL承受的张力随着胫骨后倾角的增加而增加:PTS为2°时ACL张力为12.195 N,7°时为12.639 N,12°时为18.658 N;胫骨-股骨相对位移:PTS为2°时为2.735 mm,7°时为3.086 mm,12°时为3.881 mm。在屈膝30°的模型中,前叉韧带所承受的最大张力如下:2°时为24.585 N,7°时为25.612N,12°时为31.481 N;胫骨-股骨位移为:2°时为5.590 mm,7°时为6.721 mm,12°时为6.952 mm。在屈膝90°的模型中,前叉韧带所承受的最大张力如下:2°时为5.119 N,7°时为8.674 N,12°时为9.314 N;胫骨-股骨位移为:2°时为0.276 mm,7°时为0.577 mm,12°时为0.602 mm。结论:在膝关节承受应力时,随着PTS的增加,ACL承受的张力和胫骨-股骨之间相对位移都随之增大,较大的PTS可能是ACL损伤的危险因素。 Objective To explore the biomechanical influence of posterior tibial slope (PTS)on the anterior cruciate ligament and knee joint stability. Methods The left knee joint of a healthy volunteer was scanned by CT and MRI at 7 degree of PTS. The data of CT and MRI scans were imported into Mimics software to obtain 3D model of bone,cartilage,meniscus and ligament,and then Geomagic software was used to modify of the image. The 3D model of knee joint in extension with 7° of PTS,3D models with 2° of PTS and 12° of PTS,and 3D models with 30° and 90° of knee joint flexion were respectively established through importing the 3D model of bone,cartilage,meniscus and ligament into Solidworks software. Each 3D finite element knee model was imported into ANSYS software,and then applied 1150 N vertical stress on the femur of extension model,750 N vertical stress and lateral rotary torque of 10 N·m on the femur of 30° of flexion model,and 134 N forward stress on tibia of 90° of flexion model. And the relative displacement between tibia and femur and the stress of ACL were recorded simultaneously. Results Under the knee extension,ACL tensions were 12.195 N in the model with 2° of PTS, 12.639 N in the model with 7° of PTS,and 18.658 N in the model with 12° of IrFS;The relative displacements between the tibia and femur were 2.735 mm in the model with 2° of PTS,3.086 mm in the model with 7° of FFS,and 3.881 mm in the model with 12° of PTS.Under the 30° of knee flexion,ACl, tensions were 24.585 N in the model with 2° of PTS,25.612 N in the model with 7° of PTS,and 31.481 N in the model with 12° of PTS;The relative displacements between the tibia and femur were 5.590 mm in the model with 2° of IRFS,6.721 mm in the model with 7° of PTS,and 6.952 mm in the model with 12° of PTS. Under the 90° of knee flexion,ACL tensions were 5.119 N in the model with 2° of PTS, 8.674 N in the model with 7° of PTS,and 9.314 N in the model with 12° of PTS;The relative displacements between the tibia and femur were 0.276 mm in the model with 2° of PTS,0.577 mm in the model with 7° of PTS,and 0.602 mm in the model with 12° of PTS. Conclusion When applying the stress on the knee joint,the tension of ACI, and the relative displacement between libia and femur increased with the increasing of PTS. Steeper PTS could be a risk factor for ACI, injury.
出处 《中国运动医学杂志》 CAS 北大核心 2016年第8期708-713,725,共7页 Chinese Journal of Sports Medicine
关键词 胫骨后倾角 前交叉韧带 膝关节 有限元分析 posterior tibialslope,anterior crueiate ligament,knee joint, finite element analysis
  • 相关文献

参考文献22

  • 1Arendt E,Dick R.Knee injury patterns among men and wernen in collegiatebasketball and soccet:NCAA Data and review of literature[J].Am JSports Med,1995,23(6):69.
  • 2王斌,徐青镭,孙磊.胫骨平台后倾角与非接触性前交叉韧带损伤的相关性[J].中国矫形外科杂志,2015,23(12):1083-1085. 被引量:6
  • 3Kostogiannis I,Sward P,Neuman P,et al.The influence of posterior-inferior tibial slope in ACL injury[J].Knee Surg Sports Traumatol Arthrosc,2011,19:592-597.
  • 4Anderson AF,Dome DC,Gautam S,et al.Correlation of anthropometric measurements,strength,anteriorcruciate ligament size,and intercondylar notch characteristics tosex differences in anterior cruciate ligament tear rates[J].Am JSports Med,2001,29:58-66.
  • 5Shao Q,Mac Leod TD,Manal K,et al.Estimation ofligament loading and anterior tibial translation in healthy and ACLdeficient knees during gait and the influence of increasingtibial slope using EMG-driven approach[J].Ann Biomed Eng,2011,39:110-121.
  • 6Hudek R,Fuchs B,Regenfelder F,et al.Is noncontact ACL injury associated with the posterior tibial and menisal slpoe?[J].Clin Orthop Relat Res,2011,469(8):2377-2384.
  • 7Hudek R,Schmutz S,Regenfelder F,et al.Novelmeasurement technique of the tibial slope on conventional MRI[J].Clin Orthop Relat Res,2009,467:2066-2072.
  • 8Ramaniraka N A,Terrier A,Theumann N,et a1.Effects of the posteriorcruciate ligament reconstruction on the biomechanics of the knee joint:afinite element analysis[J].Clin Biomech(Bristol,Avon),2005,20(4):434-442.
  • 9Leroux M A,Setton L A.Experimental and biphasic FEM determinations ofthe material properties and hydraulic permeability of the meni SCUS intension[J].J Biomech Eng,2002,124(3):315-321.
  • 10刘海瑞,伍勰,吴瑛.疲劳因素影响膝关节前交叉韧带的非接触性损伤生物力学[J].中国组织工程研究,2014,18(7):1101-1108. 被引量:6

二级参考文献61

  • 11,David HP.Anterior cruciate ligament injury in the female athlete.J Athletic Training,1999,34(2):85.
  • 22,Elizabeth AA, et al.Anterior cruciate ligament injury patterns among collegiate men and women. J Athletic Training,1999,34(2):86—92.
  • 33,Mary LI. Anterior cruciate ligament injury in female athletes:epidemiology. J Athletic Training,1999,34(2):150—153.
  • 44,Ned AMS, Patricia A E, Charles LB,et al.Hormanal changes throughout the menstrual cycle and increased anterior cruciate ligament laxity in females.JAT,1999,34(2):144—149.
  • 55,Timothy EH,Thomas NL,Jennifer VR,et al.The effect of neuromuscular training on the incidence of knee injury in female athletes.Am J Sports Med,1999, 27(6):699—750.
  • 6Myer GD,Ford KR,Hewett TE. ationale and Clinical Techniques for Anterior Cruciate Ligament Injury Prevention Among Female Athletes[J].{H}J Athletic Training,2004,(04):352-364.
  • 7Porter DA,Duncan M,Meyer SJ. Fifth metatarsal Jones fracture fixation with a 4.5-mm cannulated stainless steel screw in the competitive and recreational athlete:a clinical and radiographic evaluation[J].{H}American Journal of Sports Medicine,2005,(05):726-733.
  • 8Orishimo KF,Kremenic IJ. Effect of fatigue on single-leg hop landing biomechanics[J].{H}Journal of Applied Biomechanics,2006,(04):245-254.
  • 9Matava MJ,Freehil AK,Grutzner S. Limb dominance as a potential etiologic factor in noncontact anterior cruciate ligament tears[J].J Knee Surg,2002,(01):11-16.
  • 10Boden BP,Dean GS,Feagin JA Jr. Mechanisms of anterior cruciate ligament injury[J].{H}ORTHOPEDICS,2000,(06):573-578.

共引文献49

同被引文献63

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部