期刊文献+

基于定量递归特征提取的流量监测方法

Flow Monitoring Method Based on Quantitative Recursive Feature Extraction
下载PDF
导出
摘要 提出一种基于定量递归特征提取的流量预测算法,构建了网络端到端路由缓冲区短时网络流量的时间序列分析模型.采用虚假最近邻点算法和平均互信息算法对网络流量时间序列进行相空间重构,计算递归图平面中时频特征点占平面总点数的百分比,实现网络流量的时频熵特征提取,有效反应流量时间序列的内部结构特征和变化趋势,实现对流量的准确预测和监测.仿真结果表明,采用该算法能准确实现对网络流量相轨迹的预测判断,预测过程具有较好的抗干扰能力,预测精度较高. A new time series analysis model based on quantitative recursive feature extraction was proposed, the time series analysis model of network traffic time series was constructed. The false nearest neighbor algorithm and the average mutual information algorithm were used to reconstruct the phase space of the time series of network traffic.The percent of the frequency characteristic points of the total points of the plane was calculated in the recursive figure plane, and the feature of network traffic time-frequency entropy was extracted, which can effectively reflect the internal structure of flow time series characteristics and change tendency and achieve the accurate prediction and monitoring of flow. Simulation results showed that the proposed algorithm can accurately predict the trajectory of the network traffic, and has good anti-interference ability and higher prediction accuracy.
作者 米捷 黄俊
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2016年第3期456-460,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省科技计划项目(152300410201)
关键词 定量递归分析 特征提取 流量预测 相空间重构 quantitative analysis feature extraction traffic prediction phase space reconstruction
  • 相关文献

参考文献7

二级参考文献85

  • 1刘雁,慕德俊.最大Lyapunov指数实现局域网流量的预测[J].西北工业大学学报,2009,27(2):219-223. 被引量:13
  • 2丁珂.中国互联网骨干网市场问题分析与政策建议[J].广东通信技术,2007,27(6):10-14. 被引量:4
  • 3姚奇富,李翠凤,马华林,张森.灰色系统理论和马尔柯夫链相结合的网络流量预测方法[J].浙江大学学报(理学版),2007,34(4):396-400. 被引量:44
  • 4CHANG B R,TSAI H F.Improving network traffic analysis by foreseeing data-packet-flow with hybrid fuzzy-based model prediction[J].Expert Systems with Applications,2009,36(3):6960-6965.
  • 5CHEN Y,YANG B,MENG Q.Small-time scale network traffic prediction based on flexible neural tree[J].Applied Soft Computing,2012,12(1):274-279.
  • 6SEEGER M.Gaussian processes for machine learning[J].International Journal of Neural System,2004,14(2):69-106.
  • 7Gross J,Janke W,Banchmann M.Massively parallelized replica-exchange simulations of polymers on GPUs [J].Comput.Phys.Comm.,2011,182:1638-1644.
  • 8Slyck News.CacheLogic study-P2P is changing[EB/OL].http://www.slyck.com/story914_CacheLogic_Study_P2P_is_Changing,2005-09-16.
  • 9Ipoque.Ipoque Company Internet study 2008/2009[EB/OL].http://www.ipoque.com/sites/default/files/mediafiles/documents/internet-study-2008-2009.pdf,2009-04-29.
  • 10韦乐平.电信业和电信技术发展的趋势和挑战[EB/OL].http://wenku.baidu.com/view/be139cc78bd63186bcebbcdc.html,2010-10-15.

共引文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部