期刊文献+

基于子空间流形的仿射光照不变形状识别

Affine Illumination Invariant Shape Recognition Based on Subspace Manifold
下载PDF
导出
摘要 目标在成像过程中发生的几何变形在更多情形时用仿射变换来刻画,光照变化也是影响目标识别的重要因素.在一种典型的简化的光照变化约束下,将光照的灰度线性变化融入目标的几何变形,基于子空间流形理论,提出了仿射光照不变形状空间概念,分析了仿射光照不变形状空间的非线性几何结构,给出了仿射光照不变形状识别算法,模拟图像和真实图像序列实验验证了算法的有效性,该几何框架为研究几何和光照变化下的目标识别提供了新的途径. The geometric warps of the object in the imaging process should be represented by the affine transformation at most situations. The illumination variation is one of the most important factors to affect the object recognition. Under the condition of a representative and simplified illumination variation, we syncretize the gray linear variation and the object geometric warps, propose the concept of affine illumination invariant shape space, analyze its nonlinear geometry structure and present the affine illumination invariant shape recognition algorithm using the subspace theory. Experiment results on the simulated and real images verify the efficiency of the proposed framework and algorithm. This geometric framework provides a novel approach to study the automatic target recognition under the illumination variation.
出处 《广州航海学院学报》 2016年第3期43-46,共4页 Journal of Guangzhou Maritime University
基金 河南省高等学校青年骨干教师资助计划(2012GGJS-297) 河南省科技攻关项目(142102210366)
关键词 形状识别 子空间流形 仿射变换 光照不变 shape recognition subspace manifold affine transformation illumination invariant
  • 相关文献

参考文献7

  • 1MARDIA K V , PATRANGENARU V. Directions and projectiveshapes [J] . The Annals of Statistics,2005 ,33(4) :1666 - 1699.
  • 2KENDALL D G. Shape manifolds,procrustean metrics and complexprojective spaces [J] . Bulletin of London Mathematical Society,1984,16(2) :81 -121.
  • 3刘云鹏,李广伟,史泽林.基于Grassmann流形的仿射不变形状识别[J].自动化学报,2012,38(2):248-258. 被引量:6
  • 4SRIVASTAVA A,DAMON J N,DRYDEN I L,et al. Guest editors5introduction to the special section on shape analysis and itsapplications in image understanding [J]. IEEE Transactions onPattern Analysis and Machine Intelligence,2010,32 (4) :577 -578.
  • 5EDELMAN A ,T A ARIAS, and S T SMITH. The geometry ofalgorithms with orthogonality constraints. SIAM Journal on MatrixAnalysis and Applications, 1999,20(2) :303 -353.
  • 6LIN D,YAN S,and TANG X. Pursuing informativeprojection onGrassmann manifold. In : Proceedings of IEEE Conference onComputer Vision and Pattern Recognition. New York, USA : IEEE ,2006. 1727 -1734.
  • 7ZHANG L,TSE D N. Communication on the Grassmann manifold:Ageometric approach to the noncoherent multiple-antenna channel.IEEE Transactions on Information Theory, 2002,48 (2 ) : 359 -383.

二级参考文献27

  • 1陈孝春,叶懋冬,倪臣敏.一种形状识别的方法[J].模式识别与人工智能,2006,19(6):758-763. 被引量:7
  • 2Srivastava A, Damon J N, Dryden I L, Jermyn I H. Guest editors' introduction to the special section on shape analysis and its applications in image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 577-578.
  • 3Kendall D G. Shape manifolds, procrustean metrics and complex projective spaces. Bulletin of London Mathematical Society, 1984, 16(2): 81-121.
  • 4Zhang J, Zhang X, Krim H, Walter G G. Object representation and recognition in shape spaces. Pattern Recognition, 2003, 36(5): 1143-1154.
  • 5Huckemann S, Hotz T, Munk A. Intrinsic MANOVA for Riemannian manifolds with an application to Kendall's space of planar shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 593-603.
  • 6Han Y X, Wang B, Idesawa M, Shimai H. Recognition of multiple configurations of objects with limited data. Pattern Recognition, 2010, 43(4): 1467-1475.
  • 7Huttenlocher D P, Ullman S. Recognizing solid objects by alignment with an image. International Journal of Computer Vision, 1990, 5(2): 195-212.
  • 8Grenander U, Miller M I. Pattern Theory; from Representation to Inference. New York: Oxford University Press, 2007.
  • 9Fletcher P T, Whitaker T R. Riemannian metrics on the space of solid shapes. In: Proceedings of the International Workshop on Mathematical Foundations of Computational Anatomy. Copenhagen, Denmark: MICCAI, 2006. 1-11.
  • 10Klassen E, Srivastava A, Mio W, Joshi S. Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(3): 372-383.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部