期刊文献+

草酸前驱体法制备高性能钠离子电池正极材料NaNi_(0.5)Mn_(0.5)O_2 被引量:2

Preparation of NaNi_(0.5)Mn_(0.5)O_2 with High-Performance as Cathode Material for Sodium Ion Batteries
下载PDF
导出
摘要 采用草酸前驱体法和传统固相法分别合成了钠离子电池正极材料镍锰酸钠(NaNi_(0.5)Mn_(0.5)O_2),并通过XRD,SEM,恒流充放电测试,电化学阻抗图谱(EIS)和循环伏安(CV)等测试方法,考察了两种材料在结构、形貌和电化学性能方面的差异。结果显示,用草酸前驱体法制备的材料为结晶良好的层状结构,无杂相存在,颗粒直径在1μm左右。在0.5C(60 mA·g^(-1))的倍率下,充放电电压范围为2.0~3.8 V时,草酸前驱体法和高温固相法制备的材料首圈放电比容量分别为119.4 mAh·g^(-1)和123.7 mAh·g^(-1),100次循环后,容量保持率分别为58.3%和35.6%。基于工艺上的简单和有效特性,草酸前驱体法很有潜力作为规模制备钠离子电池层状氧化物正极材料的方法。 Cathode material NNaNi0.5Mn0.5O2 for Na-Ion battery was prepared by oxalate precursor method and traditional solid-state method respectively,and the structural profiles and electrochemical performance for the material prepared via the two different route were explored by XRD, SEM, charge- discharge tests, EIS and CV. It was observed that the as-prepared cathode by oxalate precursor method showed typical crystal in layered structure without impurity phase, and its particle size varied around 1 jjim. The reversible capacity of the as-prepared materials by oxalate precursor method and traditional solid-state method were 119. 4 mAh · g^-1 and 123. 7 mAh · g^-1 at 0. 5C within the voltage range of 2. 0- 3.8 V respectively. And the corresponding long-term capacity retention after 100 cycles were 58. 3% and 35. 6%. Based on the simplicity and efficiency of the oxalate precursor based process, it was promising for mass preparation of layered oxides for Na-ion battery cathode materials.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2016年第8期2101-2107,共7页 Journal of Synthetic Crystals
基金 国家自然科学基金(21506141) 山西省青年基金(2015021131)
关键词 钠离子电池 正极材料 草酸前驱体法 固相法 镍锰酸钠 sodium ion battery cathode material oxalate precursor method solid-state method NaNi0.5Mn0.5O2
  • 相关文献

参考文献21

  • 1Cho J,Jeong S,Kim Y.Commercial and Research Battery Technologies for Electrical Energy Storage Applications[J].Progress in Energy and Combustion Science,2015,48:84-101.
  • 2Diouf B,Pode R.Potential of Lithium-Ion Batteries in Renewable Energy[J].Renewable Energy,2015,76:375-380.
  • 3Choi N S,Chen Z,Freunberger S A,et al.Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors[J].Angewandte Chemie International Edition,2012,51(40):9994-10024.
  • 4Goodenough J B,Kim Y.Challenges for Rechargeable Li Batteries[J].Chemistry of Materials,2009,22(3):587-603.
  • 5Hong S Y,Kim Y,Park Y,et al.Charge Carriers in Rechargeable Batteries:Na Ions vs.Li Ions[J].Energy&Environmental Science,2013,6(7):2067-2081.
  • 6Kundu D,Talaie E,Duffort V,et al.The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage[J].Angewandte Chemie International Edition,2015,54(11):3431-3448.
  • 7Palomares V,Serras P,Villaluenga I,et al.Na-ion Batteries,Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems[J].Energy&Environmental Science,2012,5(3):5884-5901.
  • 8Kim S W,Seo D H,Ma X,et al.Electrode Materials for Rechargeable Sodium-Ion Batteries:Potential Alternatives to Current Lithium-Ion Batteries[J].Advanced Energy Materials,2012,2(7):710-721.
  • 9Nithya C,Gopukumar S.Sodium Ion Batteries:A Newer Electrochemical Storage[J].Wiley Interdisciplinary Reviews:Energy and Environment,2015,4(3):253-278.
  • 10Yuan D D,Wang Y X,Cao Y L,et al.Improved Electrochemical Performance of Fe-Substituted Na Ni0.5Mn0.5O2Cathode Materials for Sodium-Ion Batteries[J].ACS Applied Materials&Interfaces,2015,7(16):8585-8591.

二级参考文献8

  • 1Yabuuchi N,Kubota K,Dahbi M,Komaba S.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682.
  • 2Yang D,Xu J,Liao X Z,Wang H,He Y S,Ma Z F.Prussian blue without coordinated water as a superior cathode for sodium-ion batteries[J].Chemical Communications,2015,51:8181-8184.
  • 3Whittingham M.Chemistry of intercalation compounds:Metal guests in chalcogenide hosts[J].Progress in Solid State Chemistry,1978,12(1):41-99.
  • 4Stevens D A,Dahn J R.High capacity anode materials for rechargeable sodium-ion batteries[J].Journal of the Electrochemistry Society,2000,147(4):1271-1273.
  • 5Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S. P2-type Nax[Fe1/2 Mn1/2]O2 made from earth-abundant elements for reehargeable na batteries[J]. Nature Materials, 2012, 11 (6): 512-517.
  • 6Mu Linqin,Xu Shuyin,Li Yunming,Hu Yongsheng,Li Hong,Chen Liquan,Huang Xuejie.Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J].Advanced Materials,2015,27(43):6928-6933.
  • 7Kim D,Lee E,Slater M,Lu W Q,Rood S,Johnson C S.Layered NaN i1/3Fe1/3Mn1/3O2 cathodes for Na-ion battery application[J].Electrochemistry Communications,2012,18:66-69.
  • 8Wang Hong,Yang Bingjian,Liao Xiaozhen,Xu Jing,Yang Dezhi,He Yushi,Ma Zifeng.Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges[J].Electrochimica Acta,2013,113:200-204.

共引文献9

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部