期刊文献+

Unit groups of quotient rings of complex quadratic rings 被引量:1

Unit groups of quotient rings of complex quadratic rings
原文传递
导出
摘要 For a square-free integer d other than 0 and 1, let K = Q(√d), where Q is the set of rational numbers. Then K is called a quadratic field and it has degree 2 over Q. For several quadratic fields K = Q(√d), the ring Rd of integers of K is not a unique-factorization domain. For d 〈 0, there exist only a finite number of complex quadratic fields, whose ring Rd of integers, called complex quadratic ring, is a unique-factorization domain, i.e., d = -1,-2,-3,-7,-11,-19,-43,-67,-163. Let Q denote a prime element of Rd, and let n be an arbitrary positive integer. The unit groups of Rd/(Q^n) was determined by Cross in 1983 for the case d = -1. This paper completely determined the unit groups of Rd/(Q^n) for the cases d = -2, -3. For a square-free integer d other than 0 and 1, let K = Q(√d), where Q is the set of rational numbers. Then K is called a quadratic field and it has degree 2 over Q. For several quadratic fields K = Q(√d), the ring Rd of integers of K is not a unique-factorization domain. For d 〈 0, there exist only a finite number of complex quadratic fields, whose ring Rd of integers, called complex quadratic ring, is a unique-factorization domain, i.e., d = -1,-2,-3,-7,-11,-19,-43,-67,-163. Let Q denote a prime element of Rd, and let n be an arbitrary positive integer. The unit groups of Rd/(Q^n) was determined by Cross in 1983 for the case d = -1. This paper completely determined the unit groups of Rd/(Q^n) for the cases d = -2, -3.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第4期1037-1056,共20页 中国高等学校学术文摘·数学(英文)
基金 This work was supported by the National Natural Science Foundation of China (Grant Nos. 11461010, 11161006), the Guangxi Natural Science Foundation (2014GXNSFAAll8005, 2015GXNSFAA139009), the Guangxi Science Research and Technology Development Project (1599005-2-13), and the Science Research Fund of Guangxi Education Department (KY2015ZD075).
关键词 Complex quadratic ring quotient ring unit group quadratic field Complex quadratic ring, quotient ring, unit group, quadratic field
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部