期刊文献+

非线性Black-Scholes模型下阶梯期权定价 被引量:3

The pricing of step options under the nonlinear Black-Scholes model
下载PDF
导出
摘要 在非线性Black-Scholes模型下,研究了阶梯期权定价问题.首先利用多尺度方法,将阶梯期权适合的偏微分方程分解成一系列常系数抛物方程;其次通过计算这些常系数抛物型方程的解,给出了修正障碍期权的近似定价公式;最后利用Feymann-Kac公式分析了近似结论的误差估计. In this paper, the pricing problems of geometric average Asian options are studied under the nonlinear Black-Scholes model. Firstly, the partial differential equations for the Asian options are transformed into a series of parabolic equations with constant coefficients by the perturbation method of single-parameter. Secondly, the approximate pricing formulae of the geometric average Asian options are given by solving those parabolic equations with constant coefficients. Finally, the error estimates of the approximate solutions are given by using Green function.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2016年第3期262-272,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(71401134 71571144) 贵州省科学技术基金(黔科合J字[2015]2076号) 贵州民族大学引进人才科研基金(15XRY005) 贵州省研究生卓越人才计划(ZYRC字[2014]008)
关键词 阶梯期权 非线性Black-Scholes模型 Feymann-Kac公式 误差估计 geometric average Asian options nonlinear Black-Scholes model Green Function error estimates
  • 相关文献

参考文献11

二级参考文献22

  • 1高长林,易法槐.美式利率期权定价的抛物型变分不等式[J].高校应用数学学报(A辑),2008,23(1):13-22. 被引量:1
  • 2江龙.倒向随机微分方程的极限定理与惟一性定理[J].中国科学(A辑),2006,36(9):961-970. 被引量:1
  • 3Cox J, Ross S A. The valuation of options for alternative stochastic processes[J]. Financial Economics, 1976, 3 (1): 145-166.
  • 4Cox J C, Ross S A, Rubinstein M. Option pricing: a simplified approach[J]. Finance Eco- nomics, 1979, 6(3): 229-263.
  • 5Su Y L, Lin T I, Lee C F. Constant elasticity of variance(CEV) option pricing model: integration and detailed derivation[J], mathematics and coputers in simulation, 2008, 79(1): 60-70.
  • 6Chen R R, Lee C F. A constant elasticity of variance (CEV) family of stock price distributions in option pricing: review and integration[J]. Financial Study, 1993, 1: 25-51.
  • 7Emanuel D, MacBethJ . Further results on the constant elasticity of variance call option pricing formula[J]. Financial. Quantitative Analysis, 1982, 17(1): 533-554.
  • 8Campbell J. Stock Returns and the Term Structure[J]. Financial Economics, 1987, 18(2): 373-399.
  • 9Feller W. Two singular diffusion problems[J]. Annals of Mathematics, 1951, 54: 173-182.
  • 10Sun Yudong, Shi Yimin. A new method for European option pricing with two stocks[J]. Physical Sciences, 2010, 14: 165-171.

共引文献27

同被引文献23

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部