期刊文献+

应用于超低电压下的SRAM存储单元设计 被引量:1

A SRAM Bitcell Design for Ultra-Low Supply Application
下载PDF
导出
摘要 提出一种能够工作在低电压下的SRAM存储单元,单元采用8T结构,在传统6T结构的基础上增加两个串联的NMOS构成读出端口,传统6T结构中背靠背反相器采用高阈值晶体管.采用Smic130nm工艺仿真结果显示,提出的8T结构能够在最低0.3V下正常操作,单元的读写噪声容限,保持噪声容限,相比传统6管结构显著提升,并且低电压下静态功耗方面均比传统6管结构降低60%~70%. This paper presents a novel SRAM bitcell structure which is applied for ultra-low voltage. The biteell is composed of 8 transistors, two additional NMOS transistors in series is added to traditional 6T structure as a read out port. Besides, the back to back to inverter is designed by high threshold voltage transistors. Simulations in simic 130 nm process are operated. The simulation results show that the hold and read static noise margin of proposed bitcell have enhanced greatly comparing to conventional 6T, additionally, this new biteell can operate correctly in ultra-low voltage region. Comparing to conventional 6T cell, the static power consuming of this bitcell is reduced by 60%~70% in low voltage region.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第9期15-18,23,共5页 Microelectronics & Computer
基金 中国科学院战略性先导科技专项极低功耗智能感知技术(XDA06020401)
关键词 随机静态存储器(SRAM) 低电压 低功耗 存储单元 多阈值 SRAM low voltag low power store cell multi-threshold voltage
  • 相关文献

参考文献10

  • 1Sinangil Y, Chandrakasan A P. A 128 kbit SRAM with an embedded energy monitoring circuit and sense-amplifier offset compensation using body biasing [J]. IEEE Journal of Solid-State Circuits, 2014, 49 (11) : 2730-2739.
  • 2Sharma V, Cosemans S, Ashouei M, eta[. A 4.4 pJ/ access 80 MHz, 128 kbit variability resilient SRAM with multi-sized sense amplifier redundancy[J]. Solid- State Circuits, 2011, 46(10) : 2416-2430.
  • 3Calhoun B H, Chandrakasan A P. Ultra-dynamic volt- age scaling (UDVS) using sub-threshold operation and local voltage dithering[J]. IEEE J. Solid-State Circuits, 2006, 41(1) :238-245.
  • 4Wu J J, Chen Y H, Chang M F, et al. A large sigma VTH/VDD tolerant zigzag 8T SRAM with area-effi- cient deeoupled differential sensing and fast write-back scheme [J]. Solid-State Circuits, IEEE Journal of, 2011, 46(4) :815-827.
  • 5Liu Z, Kursun V. Characterization of a novel nine- transistor SRAM cell[J]. IEEE Transactions on Very Large Scale Integration Systems, 2008, 16 ( 4 ) : 488-492.
  • 6Tawfik S A, Kursun V. Low power and robust 7T du- al-Vt SRAM cireuitEC~//Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium oi~ Se- attle. Washington,USA, IEEE, 2008 : 1452-1455.
  • 7Pasandi G, Fakhraie S M. A new sub-300mV 8T SRAM cell design in 90nm CMOS[C~//Computer Ar- chitecture and Digital Systems (CADS), 2013 17th CSI International Symposium on. Tehran, Iran, IEEE, 2013 .. 39-44.
  • 8Chang M H, Chiu Y T, Lai S L, et al. A lkb 9T sub- threshold SRAM with bit-interleaving scheme in 65nm CMOS[C] // Proceedings of the 17th IEEE/ACM in- ternational symposium on Low-power electronics and design. Italy, Rome, IEEE Press, 2011 : 291-296.
  • 9Yabuuchi M. A 45nm 0. 6V cross-point 8T SRAM with negative biased read/write assist[C~//VLSI Cir- cuits, 2009 Symposium on. Japan, Kyoto, 2009: 158-159.
  • 10Wang Jiajing, Nalam S, Calhoun B H. Analyzing static and dynamic write margin for nanometer SRAMs[M~.UK,Cardiff, Low Power Electronics and Design, In- ternational Symposium on ACM Press, 2008:129-134.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部