期刊文献+

融合梯度信息的改进引导滤波 被引量:36

Improved guided image filtering integrated with gradient information
原文传递
导出
摘要 目的为了有效消除引导滤波平滑图像后产生的光晕现象,提出一种新型的融合梯度信息的改进引导滤波算法。方法该算法借助引导图像的梯度信息来判断图像边缘位置,并结合指数函数框架设计权值来控制不同图像区域内的平滑倍数,使改进后的引导滤波能够自适应地区分和强调边缘,从而避免边缘附近由于过度模糊所引入的光晕现象。结果与引导滤波算法相比,本文算法能在保边平滑的同时较好地抑制光晕,并在结构相似性(SSIM)评价和峰值信噪比(PSNR)评价中分别取得最高约30%和15%左右的质量提升。结论本文算法具有较好的鲁棒性,在图像平滑、图像细节增强、多曝光图像融合等多种图像处理相关应用中均有着良好的表现。 Objective To eliminate halo artifacts produced by guided image filtering, this paper proposes a novel, improved, guided image filter that is integrated with gradient information. Method Our method uses gradient information of guidance images to determine edge positions, and designs the weight model based on an exponential function to control the smoothness of different image regions. It makes an improved guided image filter that adaptively finds edges and emphasizes them, thereby avoiding the halo introduced by excessive smooth near edges. Result Experiments show that our method can avoid halo artifacts during periods of edge-preserving smoothing, and respectively attains approximately 30% and 15% higher advancement for SSIM and PSNR, compared with the guided image filter. Conclusion Our method has greater ro- bustness and performance in many computer vision and computer graphics applications such as image smoothing, detail en- hancement, and multi-exposure fusion.
出处 《中国图象图形学报》 CSCD 北大核心 2016年第9期1119-1126,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61501198 41101425 41201413) 湖北省自然科学基金面上项目(2014CFB461) 武汉市青年科技晨光计划(2014072704011248) 华中师范大学中央高校基本科研业务费项目(CCNU14A05017)~~
关键词 保边平滑 引导滤波 梯度 光晕 参数自适应 edge-preserving smoothing guided image filter gradient halo parameter self-adaption
  • 相关文献

参考文献4

二级参考文献66

  • 1李学明.基于Retinex理论的图像增强算法[J].计算机应用研究,2005,22(2):235-237. 被引量:66
  • 2Kuc R,Schwartz M. Estimating the acoustic attenuation coefficient slope for liver from reflected ultrasound signals[J].{H}IEEE TRANSACTIONS ON SONICS AND ULTRASONICS,1979,(5):353-361.
  • 3Yu Y J,Wang J. Backscatter-contour-attenuation joint estimation model for attenuation compensation in ultrasound imagery[J].{H}IEEE Transactions on Image Processing,2010,(10):2725-2736.
  • 4Haralick R M,Shanmugan K,Dinstein I. Texture features for image classification[J].IEEE Transactions System Man and Cyberntics,1973,(6):610-621.
  • 5He K M,Sun J,Tang X O. Guided image filtering[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,(6):1397-1409.
  • 6Lin C H,Sun Y N,Lin C J. A motion compounding technique for speckle reduction in ultrasound images[J].{H}JOURNAL OF DIGITAL IMAGING,2010,(3):246-257.
  • 7Shao D G,Liu P,Liu D C. Characteristic matching-based adaptive fast bilateral filter for ultrasound speckle reduction[J].{H}Pattern Recognition Letters,2013,(5):463-469.
  • 8Wear K A. A gaussian framework for modeling effects of frequency-dependent attenuation,frequency-dependent scattering,and gating[J].{H}IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2002,(11):1572-1582.
  • 9Treece G M,Gee A H,Prager R W. Ultrasound compounding with automatic attenuation compensation using paired angle scans[J].{H}Ultrasound in Medicine & Biology,2007,(4):630-642.
  • 10Knipp B S,Zagzebski J A,Wilson T A. Attenuation and backscatter estimation using video signal analysis applied to B-mode images[J].{H}ULTRASONIC IMAGING,1997,(3):221-233.

共引文献38

同被引文献135

引证文献36

二级引证文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部