期刊文献+

广义Delta算子系统的输出反馈容许控制研究 被引量:1

Output Feedback Admissible Control for Singular Delta Operator Systems
下载PDF
导出
摘要 为保证相应的闭环系统容许,本文对广义Delta算子系统的输出反馈容许控制问题进行研究。为广义Delta算子系统设计合理的静态输出反馈和动态输出反馈控制器,利用矩阵不等式方法,分别得到了广义Delta算子系统存在静态和动态输出反馈容许控制器的充分必要条件,同时利用矩阵不等式的解给出了相应控制器的构造方法,并给出一个数值算例对本文的理论结果进行验证。验证结果表明,按照本文方法所设计的静态和动态输出反馈控制器,均能保证所得的闭环系统是容许的,所设计的动态输出反馈容许控制器是有效且可行的。该研究对工程实际中的状态反馈无法实现问题具有重要的理论参考价值。 State feedback is the most frequently adopted control method,where the system state must be known in advance.But sometimes the state is not readily available or the cost to obtain the state is too high,in which cases state feedback control cannot be realized.Therefore it is necessary to study output feedback control problem.This paper deals with the problem of output feedback admissible control of singular delta operator systems.The purpose is to design reasonable static and dynamic output feedback controllers for singular delta operator systems,respectively,such that the corresponding closed-loop systems are admissible.By using the method of matrix inequalities,necessary and sufficient conditions for the existence of suitable static and dynamic output feedback admissible controllers are presented,respectively.Moreover,the design methods of the corresponding controllers are obtained based on the solutions to matrix inequalities.Finally,a numerical example is given to demonstrate the theoretical results in this paper.Analysis results show that the designed static and dynamic output feedback controllers according to the method in this paper can indeed ensure that the closedloop systems are admissible.Thus,the controller design methods in this paper are indeed effective and feasible.
出处 《青岛大学学报(工程技术版)》 CAS 2016年第3期70-74,85,共6页 Journal of Qingdao University(Engineering & Technology Edition)
关键词 广义Delta算子系统 输出反馈 容许控制 矩阵不等式 Singular Delta Operator Systems Output Feedback Admissible Control matrix inequality
  • 相关文献

参考文献8

二级参考文献70

  • 1董心壮,张庆灵.时变不确定广义系统的鲁棒无源控制[J].控制理论与应用,2004,21(4):517-520. 被引量:15
  • 2李秀英,邢伟.基于LMI的广义时滞系统无源控制(英文)[J].黑龙江大学自然科学学报,2005,22(6):743-746. 被引量:6
  • 3[5]Wang H H, Yung C F, Chang F R. Bounded real lemma and H∞ control for descriptor systems[J]. IEE Pro Pt D, 1998,145(3):316-322.
  • 4[6]Lozano-Leal R, Joshi S M. Strictly positive real transfer function revisited[J]. IEEE Trans Autom Control, 1990,35(10):1243-1245.
  • 5[7]Xie L, Soh Y C. Positive real control for uncertain linear time-invariant systems[J]. Systems & Control Letters, 1995,24(3):265-271.
  • 6[8]Sun W, Phargonekar P P, Shim D. Solution to the positive real control problem for linear time-invariant systems[J]. IEEE Trans Autom Control, 1994,39(10):2034-2046.
  • 7[9]Haddad W M, Bernstein D S. Robust stabilization with positive real uncertainty: beyond the small gain theorem[J]. Systems & Control Letters, 1991,17(3):191-208.
  • 8[10]Safonov M G, Jonckheere E A, Limbeer D J N. Synthesis of positive real multivariable feedback systems[J]. International Journal of Control, 1987,45(4):817-842.
  • 9[11]Iwasaki T, Skelton R E. Parametrization of all stabilizing controllers via quadratic Lyapunov functions[J]. J of Optim Theory and Appl, 1995,85(2):291-307.
  • 10Zames G. Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms and Approximate Inverses[J]. IEEE Trans. on Auto. Contr., 1981, 26(2):301-320.

共引文献35

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部