期刊文献+

Hunter-Saxton方程的对称约化与群不变解

Symmetry Reduction and Group Invariant Solutions of Hunter-Saxton Equations
下载PDF
导出
摘要 借助符号计算软件Maple,根据微分方程单参数不变群和群不变解的概念,利用李群对称的待定系数法,得到Hunter-Saxton方程的包含5个任意常数和一个任意函数的一般形式的对称.通过该对称中任意的函数和常数的不同选取,将Hunter-Saxton方程约化为不同形式的常微分方程.最后对约化后的常微分方程进行变换求解,进一步得出Hunter-Saxton方程的一些群不变解和精确解. By using the symbolic computation software Maple,according to the concepts of single parameter invariant groups and group invariant solutions of differential equations, the general symmetry of the Hunter-Saxton equation was obtained with the help of its symmetry equation, which included five arbitrary constants and one arbitrary function. The Hunter-Saxton equation was reduced to some types of different ordinary differential equations by selecting different constants and function. Finally,with the transformational solving of the ordinary differential equations,group invariant solutions and exact solutions of the Hunter-Saxton equation were obtained directly.
出处 《上海理工大学学报》 CAS 北大核心 2016年第4期313-317,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(110711640) 国家自然科学基金青年基金资助项目(11201302) 上海市自然科学基金资助项目(10ZR1420800) 上海市重点学科建设资助项目(XTKX2012)
关键词 Hunter-Saxton方程 李群对称 群不变解 Hunter-Saxton equation Lie symmetry group group-invariant solutions
  • 相关文献

参考文献11

二级参考文献74

  • 1Liu Hanze Qiu Fang.ANALYTIC SOLUTIONS OF AN ITERATIVE EQUATION WITH FIRST ORDER DERIVATIVE[J].Annals of Differential Equations,2005,21(3):337-342. 被引量:6
  • 2Olver P J. Applications of Lie Groups to Differential Equations[M]. Berlin:Springer Velag, 1986.
  • 3Biuman G W, Kumei S. Symmetries and Differential Equations[M]. Berlin:Springer Velag, 1989.
  • 4S. Lie, Arch. for Math. 6 (1881) 328;translation by N.H. Ibragimov.
  • 5G.W. Bluman and S.C. Anco, Symmetry and Integeration Methods for Differential Equations, Springer, New York (2004).
  • 6G. BIuman, A.F. Cheviakov, and S. Anco, Application of Symmetry Methods to Partial Differential Equations, Springer, New York (2010).
  • 7M. Nadjafikhah and F. Ahangari, Commun. Theor. Phys. 56 (2011) 211.
  • 8M. Nadjafikhah, R Bakhshandeh Chamazkoti, and F. Ahangari, Applied Mathematics and Mechanics (English Edition) 32 (2011) 1607.
  • 9M. Nadjafikhah and F. Ahangari, Communications in Nonlinear Science and Numerical Simulation 17 (2012) 2350.
  • 10P.J. Olver, Applications of Lie group to Diferential Equations, in: Graduate Text Maths, Vol. 107 Springer, New York (1986).

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部