摘要
针对模型预测控制(model predictive control,MPC)系统经济性能设计问题,结合自适应迭代学习控制的设计思想,提出了一种自适应步长迭代学习控制(adaptive step iterative learning control,ASILC)策略。该策略将系统变量方差与控制器参数之间的关系近似成离散的线性区间组合,并借助上一步迭代的过程信息,自适应地更新迭代步长,逐步使系统的经济性能达到最优。将该方法应用于乙烯裂解炉控制系统中,仿真结果表明:与迭代学习控制方法相比,ASILC能更快地收敛到最优工作点附近,得到最优经济性能下的控制器参数λ,经过7次优化迭代后经济性能目标值提高了28.92%。
An adaptive step iterative learning control (ASILC) strategy was developed for model predictive control (MPC) system economic performance design. The strategy treats the functional relationship between the variable variances and the controller parameters as a combination of discrete linear intervals and uses process information in the last iteration to adaptively update the iteration step. This optimizes the economic performance step by step. The method is used to design an ethylene cracking furnace control system. Simulations show that ASILC converges to the optimal operating point faster than iterative learning control (ILC) and obtains the controller parameter for the optimal economic performance. After seven optimizations and iterations, the economic performance target was improved 28.92%.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016年第9期1016-1024,共9页
Journal of Tsinghua University(Science and Technology)
基金
国家自然科学基金重点基金资助项目(61134007)
国家自然科学基金面上基金资助项目(61174118)
上海市自然科学基金资助项目(14ZR1421800)
上海市重点学科建设基金资助项目(B504)
流程工业综合自动化国家重点实验室开放课题基金资助项目(PALN201404)
关键词
自适应迭代学习控制
经济性能设计
模型预测控制(MPC)
迭代步长
乙烯裂解炉
adaptive iterative learning control
economic performance design
model predictive control (MPC)
iterative step
ethylene cracking furnace