期刊文献+

应用单演小波分析的织物疵点检测 被引量:4

Fabric defect detection using monogenic wavelet analysis
下载PDF
导出
摘要 为解决现有织物疵点检测算法对种类繁多的疵点形式尤其是对微弱纹理变化疵点的适应性较弱问题,提出以单演小波分析工具为基础的织物疵点检测算法。通过分数阶拉普拉斯算子与多重调和样条构建各向同性拉普拉斯小波后,对其进行Riesz变换生成Riesz-拉普拉斯小波,实现了织物图像的单演小波分析。对单演小波分析结果中的多分辨率方向与振幅子带,分别设计了最优响应判断标准以及最优响应子带分割方法。实验结果表明,所提出的检测算法能有效分割不同织物纹理中的多种类疵点,分割结果可反映疵点位置与轮廓,对342幅实验样本图像实现了97.37%的检出率,具有较好的自适应性与鲁棒性。 In order to overcome the poor adaptability of existing fabric defect detection algorithms on numerous kinds of defects, especially minor texture changes, a fabric defect detection algorithm based on monogenic wavelet analysis was proposed. The monogenie wavelet analysis on fabric images works with the Riesz-Laplace wavelet, which is generated by performing Riesz transform to an isotropic Laplace wavelet constructed by combining a fractional Laplacian with a polyharmonie spline. For the mnltiresolusional orientation and amplitude subbands outputted by monogenic wavelet analysis, respective criteria for the best responses and segmentation method on the best response subbands were designed. Experimental results showed that the proposed detection algorithm could effectively segment various kinds of defects in different fabric textures, consequently demonstrating the position and shape of defects, and achieved a detection ratio of 97.37% on 342 experimental sample images, bearing a sound selfadaptability and robustness.
出处 《纺织学报》 EI CAS CSCD 北大核心 2016年第9期59-64,共6页 Journal of Textile Research
基金 国家自然科学基金项目(61501209) 国家自然科学青年基金项目(61203364) 高等学校博士学科点专项科研基金项目(20120093130001) 江苏高校优势学科建设工程资助项目(苏政办发[2014]37号)
关键词 织物疵点检测 单演小波分析 RIESZ变换 拉普拉斯小波 多重调和样条 fabric defect detection monogenic wavelet analysis Riesz transform Laplace wavelet polyharmonic spline
  • 相关文献

参考文献1

二级参考文献10

  • 1高晓丁,高滨,左贺,辛文辉.基于支撑矢量机的织物疵点识别算法[J].纺织学报,2006,27(5):26-28. 被引量:6
  • 2HUANG Norden E, SHEN Zheng, LONG Steven R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[ J ]. Proceedings of the Royal Society, 1998, 454 (2037) :903 - 955.
  • 3NUNES J C, BOUAOUNE Y, DELECHELLE E, et al. Image analysis by bidimensional empirical mode decomposition[Jl. Image and Vision Computing, 2003, 21(12) : 1019 -1026.
  • 4dAN Runping, ZHANG Lingming. Fabric defect letection method based on Gabor filter mask[ C ]//2009 WRI Global Congress on Intelligent Systems. Xiamen: ?he World Research Institutes, 2009:184- 188.
  • 5SAPIDIS N, PERUCCHIO K. Delaunay triangulation of arbitrarily shaped planar domains [ J 1. Computer Aided Geometric Design, 1991, 8(6) :421 -437.
  • 6XU Y, LIU B, LIU J. Two-dimensional empirical mode decomposition by finite elements[Jl. Proceedings of the Royal Society, 2006, 462 ( 2074 ) : 3081 - 3096.
  • 7UMESH Adiga P S, CHAUDHURI B B. Some efficient methods to correct confocal images for easy interpo- lation[J]. Micron, 2000, 32(4):363-370.
  • 8常利利,马俊,邓中民,蒋蕾.基于灰度共生矩阵的织物组织结构差异分析[J].纺织学报,2008,29(10):43-46. 被引量:8
  • 9胡艳,张瑞林.基于小波变换和形态学的织物疵点边缘检测[J].测试技术学报,2009,23(2):173-177. 被引量:3
  • 10万建,许高凤,赵春晖.基于二维EMD的人脸图像去光照方法研究[J].哈尔滨工程大学学报,2009,30(12):1425-1429. 被引量:8

共引文献3

同被引文献24

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部