期刊文献+

A Test Method for the Static/Moving State of Targets Applied to Airport Surface Surveillance MLAT System

A Test Method for the Static/Moving State of Targets Applied to Airport Surface Surveillance MLAT System
下载PDF
导出
摘要 Due to the particularity of its location algorithm,there are some unique difficulties and features regarding the test of target motion states of multilateration(MLAT)system for airport surface surveillance.This paper proposed a test method applicable for the airport surface surveillance MLAT system,which can effectively determine whether the target is static or moving at a certain speed.Via a normalized test statistic designed in the sliding data window,the proposed method not only eliminates the impact of geometry Dilution of precision(GDOP)effectively,but also transforms the test of different motion states into the test of different probability density functions.Meanwhile,by adjusting the size of the sliding window,it can fulfill different test performance requirements.The method was developed through strict theoretical extrapolation and performance analysis,and simulations results verified its correctness and effectiveness. Due to the particularity of its location algorithm, there are some unique difficulties and features regarding the test of target motion states of multilateration (MLAT) system for airport surface surveillance. This paper proposed a test method applicable for the airport surface surveillance MLAT system, which can effectively determine whether the target is static or moving at a certain speed. Via a normalized test statistic designed in the sliding data window, the proposed method not only eliminates the impact of geometry Dilution of precision (GDOP) effectively, but also transforms the test of different motion states into the test of different probability density functions. Meanwhile, by adjusting the size of the sliding window, it can fulfill different test performance requirements. The method was developed through strict theoretical extrapolation and performance analysis, and simulations results verified its correctness and effectiveness.
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第4期425-432,共8页 南京航空航天大学学报(英文版)
基金 supported by the National Science and Technology Pillar Program of China (No.2011BAH24B06) the National Nature Science Foundation of China Chinese Civil Aviation Jointly Funded Foundation Project (No.U1433129) the Sichuan Provincial Department of Education Foundation(No.13ZB0287)
关键词 multilateration(MLAT) hypothesis testing motion state detection sliding window geometric Dilution of precision(GDOP) multilateration(MLAT) hypothesis testing motion state detection sliding window geometric Dilution of precision(GDOP)
  • 相关文献

参考文献20

  • 1SH ER M A N L , P E R E. Capacity study of m ultilateration(M L A T ) based navigation for alternative positionnavigation and tim ing (A P N T ) services for aviation[J]. N avigation, Journal of the Institute of N avigation,2012, 5 9 (4 ):263-279.
  • 2G A V IR IA M , M A U R O L , G A SPA R E G , et al. Localizationalgorithm s for m ultilateration ( M L A T )system s in airport surface surveillance [J]. S ignal,Im age and Video Processing, 2 0 1 4 ,9 (7 ) : 1549-1558.
  • 3M A U R O L , A D O LF M , G A SPA R E G. Closed formlocalization algorithm s for m ode s wide area m ultilateration[C] / / Proceeding of the 6th European R adarconference. R om e, Italy : IE E E P ress, 2009:7376.
  • 4R O ED ER M. EM M A -E uropean airport m ovem entm anagem ent by A -SM GCS-A contribution to the vision2020 [C] / / 25th C ongress of the InternationalCouncil of the A eronautical Sciences. H am burg G ermany :O ptim age, L td, 2006 :4013-4019.
  • 5M A U R O L , SILV IO S , G A SPA R E G. A D S-B/M L A T surveillance system from high altitude platformsystem s [C] / / 2011 T yrrhenian InternationalW orkshop on Digital C om m unications-Enhanced S urveillanceof A ircraft and Vehicles. Italy , C ap ri:IE E E P ress, 2011: 153-158.
  • 6IV A N M , JU A N B, R EY ES L D , et al. Im provement of m ultilateration (M L A T ) accuracy and convergencefor airport surveillance[C]/ / 2011 T yrrhenianInternational W orkshop on Digital C om m unications-Enhanced Surveillance of A ircraft and Vehicles.Italy, C ap ri: IE E E P ress, 2011: 185-190.
  • 7林棻,王浩,王伟,刘存星,谢春利.Vehicle State and Parameter Estimation Based on Dual Unscented Particle Filter Algorithm[J].Transactions of Nanjing University of Aeronautics and Astronautics,2014,31(5):568-575. 被引量:4
  • 8van T R E E S H L. D etection, estim ation, and m odulationtheory [M]. N ew Y o rk : W iley Inter Science,2001: 120-180.
  • 9TO D D K M , W Y N N C S. M athem atical m ethodsand algorithm s for signal processing [M] . U pperSaddle R iv er: Prentice H all, 2000 : 264-267.
  • 10T O N IE R I D J. Statistical theory of passive locationsystem s[J]. IE E E T rans on A E S, 1984, 20 ( 5 ):183-198.

二级参考文献13

  • 1施树明,Henk Lupker,Paul Bremmer,Joost Zuurbier.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程,2005,27(4):426-430. 被引量:29
  • 2Ryu J H.State and parameter estimation for vehicle dynamics control using GPS[D].California:Stanford University,2005.
  • 3Venhovens P J,Naab K.Vehicle dynamics estima tion using Kalman filters[J].Vehicle System Dy namics,1999,32(2):171-184.
  • 4Wenzel T A,Burnham K J,Blundell M V,et al.Kalman filter as a virtual sensor:Applied to automo tive stability systems[J].Transactions of the Institute of Measurement and Control,2007,29(2):95-115.
  • 5Best M C,Newton A P,Tuplin S.The identifying extended Kalman filter:Parametric system identification of a vehicle handling model[J].Proc IMechE,Part K:Journal of Muti-body Dynamics,2007,211(1):87-98.
  • 6Dakhlallah J,Glaser S,Mammar S,et al.Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation[C]//American Control Conference.Seattle,USA:IEEE,2008:4597-4602.
  • 7Cheng Q,Correa-Victorino A,Charara A.A new nonlinear observer using unscented Kalman filter to estimate sideslip angle,lateral tire road forces and tire road friction coefficient[C]//IEEE Intelligent Vehicles Symposium.Baden-Baden,Germany:IEEE,2011:709-714.
  • 8Wan E A,Nelson A T.Kalman filtering and neural networks[M].New York:John Wiley & Sons,2001.
  • 9Melzi S,Sabbioni E.On the vehicle sideslip angle estimation through neural networks:Numerical and experimental results[J].Mechanical Systems and Signal Processing.2011,25(6):2005-2019.
  • 10herouat H,Braci M,Diop S.Vehicle velocity,side slip angles and yaw rate estimation[C]//IEEE International Symposium on Industrial Electronics.Dubrovnik,Croatia:IEEE,2005:349-354.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部