期刊文献+

基于常规逻辑门和原理图方式的可逆逻辑描述

Reversible Logic Description Based on Conventional Logic Gates and Schematics
下载PDF
导出
摘要 针对可逆逻辑综合在设计较大规模可逆逻辑电路(ALU)时遇到的瓶颈问题。文中借用现行EDA技术的逻辑描述和验证能力,可逆逻辑门的功能表达式为依据,设计具有等功能的常规逻辑组合电路,通过等功能代换的方法,设计实现以常规原理图方式描述的可逆ALU。仿真图中显示的16种运算结果表明,该方法具有一定的可行性和有效性。 For of the rent EDA technology to expressions to solve the encountered, this paper design adopts classical logic circuits bottlenecks of reversible logic versible ALU, described with conventional logic the logic description and verification capability of the cur- as the replacement of reversible logic gates based on functional synthesis in case of great circuit scale and complexity. The re- diagram , implements sixteen logic operations. Experimental resuhs show that the proposed method is feasible and effective.
出处 《电子科技》 2016年第9期139-141,144,共4页 Electronic Science and Technology
关键词 原理图方式 常规逻辑 可逆逻辑 等功能代换 功能性描述和验证 schematic conventional logic reversible logic function replacement function description and simulation
  • 相关文献

参考文献8

  • 1Mahammad S N, Veezhinathan K. Constructing online test- able circuits using reversible logic [ J ]. IEEE Transactions on Instrumentation and Measurement, 2010,59 ( 1 ) : 101 - 109.
  • 2管致锦,秦小麟,葛自明.量子电路可逆逻辑综合的研究及进展[J].南京邮电大学学报(自然科学版),2007,27(2):24-27. 被引量:4
  • 3Barenco A,Bennett C H,Cleve R,et al. Elementary gates for quantum computation [ J ]. Physics Review A, 1995, 52 ( 5 ) :3457 - 3467.
  • 4林家逖,任德龙,田欣,刘亮.经典逻辑门与量子逻辑门之比较[J].计算机工程与科学,2005,27(11):93-95. 被引量:5
  • 5Richard P Feynman. Quantum mechanical computers [ J ]. Optical News, 1985,11 ( 2 ) : 11 - 20.
  • 6Sultana S, Radecka K. Rev - map: a direct gateway from classical irreversible network to reversible network[ C]. Tu- usula:41st IEEE International Symposium on Multiple-Val- ued Logic, 2011.
  • 7赵曙光.可编程器件技术原理与技术开发[M].西安:西安电子科技大学出版社,2011.
  • 8Haghparast M,Jassbi S J, Navi K, et al. Design of a novel reversible muhiplier circuit using HNG gate in nanotechnolo- gy [ J ]. World Applied Sciences, 2008,3 (6) :974 - 978.

二级参考文献31

  • 1Joel Birnbaum,R Stanley Williams. Physics and the Information Revolution [J]. Physics Today, 2000 , 53: 38- 42.
  • 2R Landauer. Irreversibility and Heat Generation in the Computing Process [J]. IBM Journal Research Devlopment,1961, 5: 183-192.
  • 3Richard P Feynman. Simulating Physics with Computers[J]. Int'l J Theor Phys,1982,21:467-487.
  • 4D Deutsch. Quantum Theory: The Church-Turing Principle and Universal Quantum Computer [J]. Proc R Soc[C].1985. 97-117.
  • 5P W Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring[A]. Proc of the 35th Annual IEEE Symp on Foundation of Computer Science [C]. 1994. 124-134.
  • 6L K Grover. A Fast Quantum Mechanical Algorithm for Database Search [A]. Proc of the 28th Annual ACM Symp on Theory of Computing[C]. 1996.
  • 7C A Sackett, D Kielpinski, B E King, et al. Experimental Entanglement of Four Particle [J]. Nature, 2000, 404: 256-259.
  • 8T Sleator, H Weinfurter. Realizable Universal Quantum Logic Gates [J]. Physical Review Letters, 1995, 74: 4087-4090.
  • 9C H Bennett, R Cleve, D P Divincenzo, et al. Elementary Gates for Quantum Computation [J]. Phys Rev, 1995, 52:3457-3467.
  • 10C H Bennett. Logical Reversibility of Computation [J].IBM Journal Research Development, 1973,17: 525-532.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部