期刊文献+

基于猫群优化算法的云计算虚拟机资源负载均衡调度 被引量:16

Load Balancing Scheduling of Virtual Machine Resource in Cloud Computing Based on Cat Swarm Optimization Algorithm
下载PDF
导出
摘要 为了提高虚拟机资源调度的利用率,实现虚拟机资源合理调度,提出一种基于猫群优化算法的虚拟机资源调度优化方法.首先根据虚拟机资源调度优化目标构建数学模型;然后综合考虑最短时间与最优负载构建猫群优化算法的适应度函数,并通过模拟猫的日常行为实现虚拟机资源调度最优方案的寻优;最后在CloudSim平台上对该算法的有效性进行测试.测试结果表明,该算法能获得更优的虚拟机资源调度方案,保证了虚拟机资源的负载均衡,可以满足用户需求的偏好性. In order to improve utilization ratio of virtual machine resource scheduling,and to realize reasonable scheduling of virtual machine resource,we proposed a method based on cat swarm optimization algorithm for virtual machine resource scheduling optimization.Firstly,mathematical model was built according to the virtual machine resource scheduling optimization objective.Secondly,considering the shortest time and optimal load,the fitness function of cat swarm optimization algorithm was constructed,and the optimization of the optimal scheme of virtual machine resource scheduling was realized by simulating the daily behavior of the cat.Finally,the effectiveness of the proposed algorithm was tested on CloudSim platform.Test results show that the proposed algorithm can obtain a better virtual machine resource scheduling scheme,which can ensure load balance of virtual machine resource,and meet the user's preferences.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第5期1117-1122,共6页 Journal of Jilin University:Science Edition
基金 广东省科技厅项目基金(批准号:2050075)
关键词 虚拟机资源 云计算 猫群优化算法 负载均衡 调度模型 virtual machine resource cloud computing cat swarm optimization algorithm load balancing scheduling model
  • 相关文献

参考文献14

二级参考文献115

  • 1周文煜,陈华平,杨寿保,方君.基于虚拟机迁移的虚拟机集群资源调度[J].华中科技大学学报(自然科学版),2011,39(S1):130-133. 被引量:37
  • 2杜琼,周一届.新的进化算法——文化算法[J].计算机科学,2005,32(9):142-144. 被引量:15
  • 3米勒.云计算[M].史美林,姜进磊,孙瑞志,等译.北京:机械工业出版社,2009:125-128.
  • 4FOSTER I, YONG ZHAO, RAICU I, et al. Cloud computing and grid computing 360-degree compared[C] // Proceedings of the 2008 Grid Computing Environments Workshop. Washington, DC: IEEE Computer Society, 2008:1 - 10.
  • 5ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: A Berkeley view of cloud eomputing[EB/OL]. [2010 -01 -25]. http://www, eecs. berkeley, edu/Pubs/TechRpts/20Og/EECS-20og- 28. pdf.
  • 6BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: the google cluster architecture[J]. IEEE Micro, 2003, 23(2) : 22 - 28.
  • 7CHIEN A, CALDER B, ELBERT S, et al. Entropia: Architecture and performance of an enterprise desktop grid system[J]. Journal of Parallel and Distributed Computing, 2003, 63(5):597-610.
  • 8KIM J S, NAM B, MARSH M, et al. Creating a robust desktop grid using peer-to-peer services[EB/OL]. [ 2009 - 10 - 16]. ftp://ftp. cs. umd. edu/pub/hpsl/papers/papers-pdf/ngs07.pdf.
  • 9ABRAHAM A, BUYYA R, NATH B. Nature's heuristics for scheduling jobs on computational grids[ C]// The 8th International Conference on Advanced Computing and Communications. New Delhi: Tata McGraw-Hill Publishing, 2000:45-52.
  • 10DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[ C]//Proceedings of the 6th Symposium on Operating System Design and Implementation. New York: ACM, 2004:137 - 150.

共引文献431

同被引文献135

引证文献16

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部