期刊文献+

基于小波分析和神经网络的基桩缺陷检测分析

Analysis of Pile Defect Detection Based on Wavelet Analysis and Neural Network
下载PDF
导出
摘要 通过小波分析,避免了泄露效应和由旁瓣引起的多峰现象影响频域分析的现象。通过神经网络算法,将基桩缺陷类型明确化,并指出缺陷的位置,使基桩检测结构更加人性化,同时为缺陷修复提供了较好的条件。可见,将小波分析和神经网络结合应用于基桩的检测中给施工带来了巨大的经济价值和实用价值。 In this paper, the wavelet analysis is made to avoid the leakage effect and the phenomenon of frequency domain analysis which is influenced by the side lobe. By neural network algorithm, pile defect types clear, and it pointed out the flaw position, pile detection structure is more humanized, and provide better conditions for defect repair. Visible, the wavelet analysis and neural network combined with the application in pile foundation detection to the construction has brought huge economic value and practical value.
出处 《现代工业经济和信息化》 2016年第17期84-85,共2页 Modern Industrial Economy and Informationization
基金 昆明市林业信息工程技术研究中心建设资助项目(编号2015FBI06)
关键词 小波分析 神经网络 基桩缺陷 检验检测 wavelet neural network pile defect detection
  • 相关文献

参考文献3

二级参考文献26

  • 1张良均,王靖涛,李国成.小波变换在桩基完整性检测中的应用[J].岩石力学与工程学报,2002,21(11):1735-1738. 被引量:18
  • 2曾攀.工程中的人工神经网络系统及进化方法[J].科学中国人,1996(2):34-37. 被引量:1
  • 3刘明贵,岳向红,张杰.敲击-回波法中传感器影响的小波分析[J].岩土力学,2005,26(9):1379-1384. 被引量:5
  • 4刘明贵,岳向红.基于小波神经网络的锚杆锚固质量分析[J].岩石力学与工程学报,2006,25(1):83-87. 被引量:18
  • 5徐枚在,刘兴满.桩的动测新技术[M].北京:中国建筑工业出版社,1989.
  • 6Lee 1 M, Lee J H. Prediction of pile bearing capacity using artificial neural networks[ J]. Computers and Geotechniques, 1996, 18(3) :189 -199.
  • 7Nawari N O, Liang R, Nusairat .J. Artificial intelligence techniques for the design and analysis of deep foundations[ EB/OL]. Electronic Journal of Geotechnical Engineering, 1999, 4.
  • 8Chan W T, Chow Y K, Liu L F. Neural network : an alternative to pile driving formulas [ J ]. Computers and Geotechniques, 1995, 17(2) :136 - 156.
  • 9Seidel J P. Presentation of low strain integrity testing in the time - frequency domain. Proceeding of the 16th International Con- ference on the Application Stress - Wavelet Theory to Piles, Sao Paulo, Brazil, 2000.
  • 10AMMan H, Eslami A, Nariman -Zadeh N. Piles shaft capacity from CPT and ClYru data by polynomial neural networks and genetic algorithms [ J ]. Computers and Geotechnies, 2009,36: 616 - 625.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部