摘要
提出一种基于增量非负矩阵分解的自适应背景模型,以处理动态背景变化.当有新的数据流到达时,利用增量非负矩阵分解有效地更新背景模型.实验结果表明,与非负矩阵分解相比,增量非负矩阵分解不仅运算时间更少,而且能够提取出更好的前景.
A method for adaptive background modeling based on the incremental non-negative matrix factorization( INMF) is proposed. INMF is used to update new background models effectively when new data streams arrive. The experimental results show that,compared with non-negative matrix factorization( NMF),INMF not only takes less running time but also can be used to extract better foregrounds.
出处
《深圳大学学报(理工版)》
EI
CAS
CSCD
北大核心
2016年第5期511-516,共6页
Journal of Shenzhen University(Science and Engineering)
基金
国家自然科学基金资助项目(11526145
61272252
11501377)~~
关键词
应用数学
非负矩阵分解
背景建模
增量学习
特征提取
满秩分解
前景提取
applied mathematics
non-negative matrix factorization
background modeling
incremental learning
feature extraction
full rank factorization
foreground extraction