期刊文献+

基于增量非负矩阵分解的自适应背景模型 被引量:1

Adaptive background modeling via incremental non-negative matrix factorization
下载PDF
导出
摘要 提出一种基于增量非负矩阵分解的自适应背景模型,以处理动态背景变化.当有新的数据流到达时,利用增量非负矩阵分解有效地更新背景模型.实验结果表明,与非负矩阵分解相比,增量非负矩阵分解不仅运算时间更少,而且能够提取出更好的前景. A method for adaptive background modeling based on the incremental non-negative matrix factorization( INMF) is proposed. INMF is used to update new background models effectively when new data streams arrive. The experimental results show that,compared with non-negative matrix factorization( NMF),INMF not only takes less running time but also can be used to extract better foregrounds.
出处 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2016年第5期511-516,共6页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(11526145 61272252 11501377)~~
关键词 应用数学 非负矩阵分解 背景建模 增量学习 特征提取 满秩分解 前景提取 applied mathematics non-negative matrix factorization background modeling incremental learning feature extraction full rank factorization foreground extraction
  • 相关文献

参考文献14

  • 1Jeeva S, Sivabalakrishnan M. Survey on background modeling and foreground detection for real time video sur- veillance [J]. Procedia Computer Science, 2015, 50: 566-571.
  • 2Bouwmans T. Traditional and recent approaches in back- ground modeling for foreground detection: an overview [J]. Computer Science Review, 2014, 11 (12): 31- 66.
  • 3Cristani M, Farenzena M, Bloisi D, et al. Background subtraction for automated multisensory surveillance: a comprehensive review [ J ]. Eurasip Journal on Advances in Signal Processing, 2010, 43(24) : 25-31.
  • 4Bouwmans T, El-Bar F, Vachon B. Statistical back- ground modeling for foreground detection : a survey [ J ]. Handbook of Pattern Recognition and Computer Vision, 2010, 4(2): 181-199.
  • 5Radke R, Andra S, A1-Kofahi O, et al. Image change detection algorithms: a systematic survey [ J ]. IEEE Transactions on Image Processing, 2005, 14 ( 3 ) : 294- 307.
  • 6Jolliffe I T. Principal component analysis [ M ]. New York, USA : Springer-Verlag, 1986.
  • 7Lee D, Seung H. Learning the parts of objects by non- negative matrix factorization [ J ]. Nature, 1999, 401 (6755) : 788-791.
  • 8Zhang Xiaoguo, Huang Tiejun, Tian Yonghong, et al. Background-modeling-based adaptive prediction for sur- veillance video coding [ J ]. IEEE Transactions on Image Processing, 2014, 23(2): 769-784.
  • 9Popa S, Crookes D, Miller P. Hardware acceleration of background modeling in the eompressed domain [ J ]. IEEE Transactions on Information Forensics and Security, 2013, 8(10) : 1562-1574.
  • 10Rodriguez P, Wohlberg B. A Matlab implementation of a fast incremental principal component pursuit algorithm for video background modeling [ C ]// IEEE International Conference on Image Processing. Paris : IEEE, 2014 : 3414-3416.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部