期刊文献+

基于多分辨分析的MEARTH方法及其在汽车安全仿真模型确认中的应用 被引量:2

Multiresolution Analysis Based MEARTH Method and Its Application in Automotive Safety Simulation Model Validation
下载PDF
导出
摘要 针对仿真模型确认中存在的多元和动态响应问题,提出了一种基于多分辨分析的MEARTH方法,并设计了一种基于贝叶斯决策理论的分类器来综合考虑不同响应的模型确认结果,从而可对多元动态系统的仿真模型的有效性做出综合评估。通过对某汽车乘员约束系统进行模型确认表明,利用所提出方法得到的评分比传统MEARTH方法的评分更稳定,可对多元动态系统仿真模型的有效性做出合理评判。 For multivariate and dynamic response in the simulation model validation, a muhiresolution analysis- based MEARTH method was proposed, and a classifier based on Bayesian decision theory was designed to consider the validation result of different responses synthetically, thus make a comprehensive evaluation to validity of simulation system of the multivariate dynamic system. The model validation of a vehicle occupant restraint system showed that, rating made by the proposed method is more stable than that made by MEARTH method, and can make a rational judgment of the validity of the multivariate dynamic simulation system.
作者 张玉峰 詹振飞 李君明 Zhang Yufeng Zhan Zhenfei Li Junming(Chongqing University, Chongqing 40004)
机构地区 重庆大学
出处 《汽车技术》 北大核心 2016年第9期13-17,共5页 Automobile Technology
关键词 多元动态系统 多分辨分析 汽车安全仿真 模型确认 Multivariate dynamic system, Multiresolution analysis, Automobile safety simula-tion, Model validation
  • 相关文献

参考文献2

二级参考文献29

  • 1Capitani, P., Ciaccia, P., 2007. Warping the time on data streams. Data & Knowledge Engineering, 62(3):438-458. [doi:10.1016/j.datak.2006.08.012].
  • 2Ferson, S., Oberkampf, W.L., Ginzburg, L., 2008. Model validation and predictive capability for the thermal challenge problem. Computer Methods in Applied Mechanics and Engineering, 197(29-32):2408-2430. [doi:10.1016/ j.cma.2007.07.030].
  • 3Fu, Y., Jiang, X., Yang, R.J., 2009. Auto-Correlation of an Occupant Restraint System Model Using a Bayesian Validation Metric. SAE World Congress, Detroit, USA, SAE 2009-01-1402.
  • 4Fu, Y., Zhan, Z.F., Yang, R.J., 2010. A Study of Model Validation Method for Dynamic Systems. SAE World Congress, Detroit, USA, SAE 2010-01-0419.
  • 5Hotelling, H., 1933. Analysis of a complex of statistical vari-ables into principal components. Journal of Educational Psychology, 24(6):417-441. [doi:10.1037/h0070888].
  • 6Jiang, X., Mahadevan, S., 2008. Bayesian wavelet method for multivariate model assessment of dynamical systems. Journal of Sound and Vibration, 312(4-5):694-712. [doi:10.1016/j.jsv.2007.11.025].
  • 7Jiang, X., Yang, R.J., Barbat, S., Weerappuli, P., 2009. Bayesian probabilistic PCA approach for model validation of dynamic systems. SAE International Journal of Materials & Manufacturing, 2(1):555-563. [doi:10.4271/2009-01- 1404].
  • 8Joliffe, I.T., 2002. Principal Component Analysis. Springer,New York, USA.
  • 9Lei, H., Govindaraju, V., 2003. Synchronization of Batch Trajectory Based on MultiScale Dynamic Time Warping. Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, China.
  • 10Mahadevan, S., Rebba, R., 2005. Validation of reliability computational models using Bayes networks. Reliability Engineering and System Safety, 87(2):223-232. [doi:10.1016/j.ress.2004.05.001].

共引文献2

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部