期刊文献+

将噪声作为独立变量的动态光散射数据反演(英文)

Inversion of Dynamic Light Scattering Data by Treating Noise as an Independent Variable
下载PDF
导出
摘要 在动态光散射颗粒测量时,为了从含噪的自相关函数数据中准确地反演出颗粒粒度分布,对Tikhonov正则化算法进行改进,将噪声作为一个独立的未知变量应用到正则化方程中进行粒度反演.在计算过程中,相应增加方程中各系数矩阵的行数和列数,对求解的粒度分布数值则仍取其原来方程的行数和列数,从而达到对部分噪声的剔除作用.不同噪声水平下的颗粒粒度反演结果表明,改进后的算法能够显著提高低信噪比动态光散射数据粒度反演结果的准确性,适用于宽分布较大粒径的颗粒粒度反演. In dynamic light scattering measurements, noise often makes inversion ot the autocorretanon function to obtain the particle size distribution unreliable. To obtain accurate particle size distributions from noisy dynamic light scattering data, a modified inversion method based on the original Tikhonov regularization algorithm is proposed. In the method, the noise in the data is considered an independent variable. During the inversion process the number of rows and columns of the coefficient matrix equation is increased to accommodate this. Finally, using the dimensions of the coefficient matrix, the poor particle size distribution data is separated from the recovered particle size distributions, reducing the influence of noise in the data. The particle size distributions recovered from the dynamic light scatteringdata show that the modified Tikhonov regularization inversion algorithm can give rise to improved accuracy compared with the original inversion algorithm, especially for low signal-to-noise ratio data.
出处 《光子学报》 EI CAS CSCD 北大核心 2016年第8期7-12,共6页 Acta Photonica Sinica
基金 The National Natural Science Foundation of China(No.61205191) the Natural Science Foundation of Shandong Province(Nos.ZR2014FL027,ZR2015FL034)
关键词 光散射 粒度分布 颗粒测量 反问题 信噪比 噪声分离 Light scattering Particle size distribution Particle size analysis Inverse problems Signal to noise ratio Noise separation
  • 相关文献

参考文献16

  • 1ZHU Xin-jun, SHEN Jin, SONG Li. Accurate retrieval of bimodal particle size distribution in dynamic light scattering[J]. IEEE Photonics Technology Letters, 2016, 28(3):311-314.
  • 2BALOG S, RODRIGUEZ-LORENZO L, MONNIER C A, et al. Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering[J]. Nanoscale, 2015, 7(14):5991-5997.
  • 3单良,孔明.加权非负最小二乘光子相关光谱纳米颗粒粒径反演方法[J].光子学报,2013,42(6):684-687. 被引量:1
  • 4于向飞,杨晖,杨海马,郑刚,李军,胡恒庆,Mark BIGGS.基于奇异值分解的动态光散射反演算法[J].光子学报,2013,42(11):1324-1328. 被引量:2
  • 5SCHATZEL K. Noise in photon correlation and photon structure functions[J]. Optica Acta:international Journal of Optics, 1983, 30(2):155-166.
  • 6SCHATZEL K, DREWEL M, STIMAC S.Photon correlation measurements at large lag times:improving statistical accuracy[J]. Journal of Modern Optics, 1988, 35(4):711-718.
  • 7SMART A E, EDWARDS R V, MEYER W V. Quantitative simulation of errors in correlation analysis[J]. Applied. Optics, 2001, 40(24):4064-4078.
  • 8YANG Hui, ZHENG Gang, Li Meng-chao. A discussion of noise in dynamic light scattering for particle sizing[J]. Particle and Particle System Characterization, 2008, 25(5-6):406-413.
  • 9SHEN Jin, THOMAS J C, ZHU Xin-jun,et al. Wavelet denoising experiments in dynamic light scattering[J]. Optics Express, 2011,19(13):12284-12290.
  • 10FUHRY M, REICHEL L. A new Tikhonov regularization method[J]. Numerical Algorithms, 2012, 59(3):433-445.

二级参考文献35

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部