期刊文献+

一种求解Kautz图K(d,n)反馈数的改进算法

Improved Algorithm for Feedback Vertex Number in Kautz Digraphs K(d,n)
下载PDF
导出
摘要 研究了一类重要的互连网络拓扑结构Kautz网络K(d,n)的反馈数.一个图的反馈集是指使得图G不含圈所需要移去的顶点集合,最小反馈集的阶数称为图G的反馈数.反馈集问题是经典的组合优化问题,在电路测试、操作系统解决死锁、波长转换器安装等领域都有重要的应用.确定一般网络的最小反馈点集问题属于NP问题.由于Kautz图在结点规模、路径长度和容错性上的良好性质,因此适合作为构建高效、容错、可扩展的数据中心网络的拓扑结构,被认为是对超立方体网络的挑战而替代成为下一代的并行计算机互连网络之一.本文通过构造一种算法改进了n≥8时Kautz网络反馈数的渐进公式,同时确定了n=9时Kautz网络的反馈数为精确值. The feedback number of Kantz digraphs K ( d, n), which is an important interconnection network topological structure, is re- searched in this paper. The feedback vertex set of a graph is a vertex subset which results in an acyclic graph when it is removed. The minimum cardinality of a feedback vertex set is called feedback number. The feedback set problem is originally formulated in the area of combinatorial circuit design. It has important applications in circuit testing, deadlock resolution and the wavelength converter instal- lation, et al. The minimum feedback set problem is known to be NP-hard for general graphs. Because of Kautz graphs excellent proper- ties in node degree, path length and fault tolerance to build efficient, fault-tolerant and scalable DCN, it has been thought of as a good candidate for the next generation of parallel system architectures, after the hypercube network. In this paper, we present an algorithm for constructing a feedback vertex set of K ( d, n ) . We improve the upper bound of feedback number of K ( d, n ) for n ≥ 8 and deter- mined the exact values for n = 9.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第10期2279-2284,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61170303 61472465 61562066)资助
关键词 Kautz图 反馈集 无圈子图 消圈数 反馈数 Kautz graph feedback vertex set acyclic subgraph decycling number feedback number
  • 相关文献

参考文献17

  • 1王建新,江国红,李文军,陈建二.反馈集问题的研究进展[J].计算机科学,2011,38(1):40-47. 被引量:2
  • 2Focardi R, Luccio F L, Peleg D. Feedback vertex set in hypercubes [J]. Information Processing Letters,2000,76 ( 1 ) : 1-5.
  • 3王彦辉,徐俊明.折叠立方体网络的最小反馈点集[J].运筹与管理,2005,14(6):8-11. 被引量:3
  • 4张思佳,徐喜荣,刘聪,曹楠,杨元生.关于局部扭立方体的反馈数[J].大连理工大学学报,2014,54(2):262-266. 被引量:1
  • 5Zhang Si-jia,Xu Xi-rong, Yin Chun,et al. Feedback numbers of aug- mented cubes AQn[J]. Ufilitas Mathematica,2015,97( 1 ) :183-192.
  • 6Xu Xi-rong, Wang Bao-cai, Wang Jian, et al. Feedback number of ( n, k ) -Star graphs [J]. Utilitas Mathematica ,2014,95 ( 2 ) :51-63.
  • 7Gao Li-qing, Xu Xi-rong, Wang Jian, et al. The decycling number of generalized petersen graphs [J]. Discrete Applied Mathematics, 2015,181 ( 1 ) :297-300.
  • 8Xu Jun-ming. Combinatorial theory in networks [M]. Beijing: Sci- ence Press ,2008.
  • 9Liu Sheng-yun. Research on kautz graph based data center networks [D]. Changsha: National University of Defense Technology, 2010.
  • 10Li Da-wei,Wu Jie. On the design and analysis of data center net- work architectures for interconnecting dual-port servers [C]. IEEE INFOCOM 2014- IEEE Conference on Computer Communica- tions, USA : IEEE, Piscataway, N J, USA, 2014 : 1851-1859.

二级参考文献98

  • 1Festa P,Pardalos P,Mauricio,et al. Feedback set problems. Encyclopedia of Optimization[M]. Kluwer:Kluwer Academic Publishers, 2000 : 209-258.
  • 2Karp R. Reducibility among combinatorial problems. Complexity of computer computations [M]. New York:Plenum Press, 1972.
  • 3Downey R, Fellows M. Fixed parameter tractability and completeness. Complexity Theory: Current Research [M]. Cambridge University Press, 1992.
  • 4Bodlaender H. On disjoint cycle [J]. International Journal of Foundations of Computer Science, 1994,5 ( 1 ) : 59-68.
  • 5Chen Jianer, Liu yang,O'Sullivan B, et al. A fixed parameter algorithm for the directed feedback vertex set problem [C]// Proc. of the 40th annual ACM symposium on Theory of computing. New York: ACM, 2008.
  • 6Raman V, Saurabh S, Suhramanian C. Faster fixed parameter tractable algorithms for finding feedback vertex sets [J].ACM Transactions on Algorithms, 2006,2 (3) : 403-415.
  • 7Chen Jianer, Fomin F, Liu Yang, et al. Improved algorithms for the feedback vertex set problems [G]//LNCS 4619: WADS 2007. Berlin: Springer, 2007 : 422 -433.
  • 8Erdos P,Posa L. On the maximal number of disjoint circuits of a graph [J].Math. Debrechen, 1962,9 : 3-12.
  • 9Monien B, Schulz R. Four approximation algorithms for the feedback vertex set problem [C]//Proc. of the 7th Conference on Graph Theoretic Concepts of Computer Science. 1981:315 -326.
  • 10Bar-Yehuda R, Geiger D. Approximation algorithms for the feedback vertex set problem with applications to constraint sat isfaction and bayesian inference [J].SIAM Journal on Computing,1998,27(4) :942 -959.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部